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I. Proof checking 

Proof checking consists of the automated verification of mathematical theories by 
first fully formalizing the underlying primitive notions, the definitions, the axioms 
and the proofs . Then the definitions are checked for their well-formedness and the 
proofs for their correctness, all this within a given logic. In this way mathematics 
is represented on a computer and also a high degree of reliability is obtained. 

After a certain logic is chosen (e.g. classical logic or intuitionistic logic; first-, 
second- or higher-order logic) there are still several ways in which a theory can 
be developed. The Cantor-Hilbert-Bourbaki style is to use set-theory, say Zermelo
Fraenkel set-theory with the axiom of choice formalized in first-order classical logic 
(ZFC) 1 . Indeed, the great attraction of set-theory is the fact that in principle it 
can be used to formalize most mathematical notions. But set-theory has as essential 
problem that it cannot capture computations very well. Computations are needed 
for applications of theories and- as we will see later- also for providing proofs. In 
both cases we want, say for a function f: IN"--tIN, that for numbers n,mEIN such 
that f(n) = m, we can find a formal proof of f(n.) = m, where the underlinings 
stand for representations in the theory. Althouih this is theoretically possible for 
set-theory, in practice this may not be feasible. This is because a computation has 
to be coded in set-theory as a sequence of sets being a formal description of a 
computation path (consecutive states) according to some computational model. 

Type theory presents a powerful formal system that captures both the notion of 
computation (via the inclusion of functional programs written in typed ,\-calculus) 
and of proof (via the so called 'propositions-as-types embedding', where types are 
viewed as propositions and terms as proofs). As a matter of fact there are various 
type theories , capturing various notions of computation (e.g . primitive recursion , 
recursion over higher types) and various logical systems (e.g. first order, higher 
order). In this article we will not attempt to describe a ll the different possible 
choices of type theories . Instead we want to discuss the main underlying ideas, with 
a special focus on the use of type theory as the formalism for the description of 
theories including proofs. 

Once a theory is formalized , its correctness can be verified by a small program, the 
proof checker. But in order to make the formalization process feasible, an interactive 
proof-development system is needed. This is a proof environment that stands next 
to the proof-checker and helps the human to develop the proofs. The combination 
of a proof-development system and a proof checker is called a proof-assistant. Such 
a combination is different form a 'theorem prover'. This is a computer system that 
allows the user to check the validity of mathematical theorems by generating them 
automatically. Of course, for proof-assistants the end goal is a lso to prove theorems. 
But this is not done by implementing a number of smart algorithms (like resolution 
or binary decision diagrams) , but by letting the user generate a proof, interactively 
with the system. So, the user of proof-assistants is very much in control: by means 

10r perhaps some stronger versions with large cardinals, e.g. for the formalization ·of category 
theory 
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of 'tactics' (that are input to the system) a so-called 'proof-term' is created that 
closely corresponds to a standard mathematical proof (in natural deduction style). 

For machine assisted theorem proving (via automated theorem proving or via 
interactive proof generation or a combination of the two) the main goal is to in
crease the reliability of mathematical results2 . Roughly there are two reasons why 
mathematical results may be difficult to verify. The first is complexity: the problem 
is very big, the number of cases to be distinguished being very large, etcetera. This 
is a situation that one often encounters in computer science, where, e.g. in a pro
tocol one has to go through all possible states of a system. The second problem is 
depth: the problem is very deep, very complicated. This is a situation that is more 
often encountered in pure mathematics, e.g. Fermat's last theorem is an example. 
In case of comvlexity, we may expect help from an automated reasoning tool, e.g. 
to go through a huge number of cases that each by themselves is easily verified. In 
case of depth, an automated reasoning tool will be of little use, but we may expect 
some help from a proof assistant that does the bookkeeping and prevents us from 
overseeing details. In the latter case, we might also want to use the proof assistant 
as a tool for exploring new fields. At this moment however, there is not yet a user
friendly system that provides machine assistance for doing mathematical research. 
But the potential is there . 

Proof assistants based on type theory present a general specification language to 
define mathematical notions and formulas. Moreover, it allows to construct algo
rithms and proofs as first class citizens. The advantages are that a user can define 
his or her own structures in a very flexible way, including the (executable) functions 
that are part of these structures. Furthermore- and this is what distinguishes the 
type theoretic approach to theorem proving from most of the other ones- presented 
in this style, theorem proving consists of the (interactive) construction of a proof
term, which can be easily checked indevendently. These issues will be discussed in 
more detail below. Again we want to point out that type theory presently does not 
provide a fast tool for automated theorem proving: there is (in general) not much 
automation and the fact that explicit proof-terms are constructed slows down the 
implementation. Also as a research tool proof-assistants are not yet mature. How
ever, they provide a very high reliability, both because of the explicit proof-terms 
and their well-understood meta-theory. Another good point is their expressive flex
ibility. For further reading on these issues, beyond the scope of this Chapter, we 
advise [Luo 1994] or [Nordstrom, Petersson and Smith 1990]. 

Another possible (future) application of machine assisted theorem proving is the 
field of computer mathematics. Right now, computers are used in various parts of 
mathematics, notably for computer algebra and numerical methods. Each 'of such 
applications requires the formalization of a specific part of mathematics, covering 
the domain of the application. To have various systems interact with each other and 
with the user would require a formalizat ion of substantial parts of mathematics. 

2There are systems, like JAPE [1997], Mathpcrt [1997] and Hyperproof, sec [Barwisc and 
Etchemcndy 1995], that have mainly an educational goal and arc not geared towards proving 
large mathematical theorems. However these systems are com parable since they want to prevent 
their users from erroneous reasoning. 
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For example the language OpenMath [1998] is aiming at providing an intermediate 
level between such mathematical computer applications. Reaching even further is 
the idea, laid down the QED-manifesto (see [Bundy 1994]), of creating an elec
tronic library of completely formalized and checked mathematical results, that one 
can refer to, browse through, use and extend. For this it is necessary that the proof
assistants become much more user-friendly. This would first of all require a very 
general and flexible mathematical vernacular by means of which ordinary mathe
maticians can do the work of formalizing and interact with the library. We believe 
that type theory can provide such a language. As it stands, only the Mizar project 
(see [Mizar 1989]) has created and maintains a large collection of mathematical 
results. There is, however, no obvious way of transferring a result from the Mizar 
theorem prover to another proof-assistant and also it is hard to find results in the 
Mizar library. 

2. Type- t h eor etic n ot ions for p roof ch ecking 

The type systems that are used as a foundational theory are influenced by several 
people. We mention them here and name their important contribution. Brouwer 
and Heyting for intuitionistic logic; Russell for the notion of type and for the use 
of higher order quantification to define logical operations; Gentzen and Prawitz 
for natural deduction; Church and Curry for typed lambda terms; Howard for the 
propositions-as-types interpretation; de Bruijn for introducing dependent types and 
for type conversion for J- and ,8-reduction; Scott for inductive types; Martin-LOf 
for the use of inductive types to define the logical operations, thereby completing 
the propositions-as-types interpretation, and for type conversion for iota-reduction; 
Girard for higher order type systems and their normalization; Coquand and Huet 
for building a type system that incorporates all the previous notions. 

Besides this we mention the following people. McCarthy [1962] for his idea of 
proof checking, including symbolic computing. He did not, however, consider repre
senting proofs in natural deduction form, nor did he have the use of higher types for 
making appropriate abstractions. De Bruijn for his vigorous plea for proof checking 
and revitalizing type systems for this purpose. Martin-LOf for his emphasis on reli
ability (by requiring a clear phenomenological semantics) and consequent proposal 
to restrict to predicative type systems. 

2.1. Proof checking mathematical statements 

Mathematics is usually presented in an informal but precise way. One speaks about 
'informal rigor'. A typical result in mathematics is presented in the following form. 

In situation r we have A. 

Proof. p. • 

Informal mathematics 
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Here r is an informally described set of assumptions and A is an informally given 
statement. Also the proof p is presented informally. In logic the statements r, A be
come formal objects and so does the notion of provability. Proofs still are presented 
in an informal way, but theoretically they can be formalized as a derivation-tree 
{following some precisely given set of rules). 

rf-L A 

Proof. p. • 
Mathematics formalized in logic 

It turns out that there are several natural ways to translate propositions as types 
(for the moment one may think of these as 'sets') and proofs as terms inhabiting 
('elements of') these types. The intuitive difference between sets and types is that 
an object can be in several different sets, but only in one type. Moreover, a type is a 
rather 'simple' kind of set: whether a term is of a certain type is usually decidable, 
due to the fact that 'being of a type' is a syntactic criterion. In the context of type 
theory, membership of a term a to the type A is denoted by a:A rather than aEA. 
Writing the translation of proposition A as [A] and of a proof pas [p] one has 

f- A us;ng prnof p <o> f- [p] ' [A], 

and hence 
A is provable <=> [A] is inhabited. 

Therefore the formalization of mathematics in type theory becomes the fo llowing 
(we do not write the [ J but identify a proposition or proof with its translation). 

I rf-TpoA I 
Mathematics formalized in type theory 

Now all off, A and pare formalized linguistic objects. The statement f 1--r p: A 
is equivalent to 

I Typer(p) =A I 
Proof checking 

Here, Type_(-) is a function that finds for p a type in the given context r. The 
decidability of type-checking follows from: 

• Typer(P) generates a type of pin context r or returns 'false' (if p has no such 
type). 

• The equality = is decidable. 
The story is a little bit more complicated. First there are several possible logics 
(e.g. first or second order logic; intuitionistic or classical logic). This will give rise 
to several type theories . Secondly the equality = in the last statement depends on 
the type theory: it is a conversion relation generated from a specific set of elementary 
reductions. 

In the practice of an interactive proof assistant based on type theory, the proof
terms are generated interactively between the user and the proof development sys
tem. The user types in so called tactics, guiding the proof development system to 
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construct a proof-term. At the end, this term is type checked and the type is com
pared with the original goal. In connection to proof checking, decidability problems 
that we can distinguish. 

f 1-r M : A? TCP, Type Checking Problem; 

f 1-r M : ? TSP, Type Synthesis Problem; 

f 1-r ? : A TIP, Type Inhabitation Problem. 

If we think of A as a formula and M as its proof, then the TCP asks to verify whether 
an alleged proof M indeed proves A. TSP asks to verify whether the alleged proof M 
is a proof at all. TIP asks to verify whether A is provable. It will be clear that TIP 
is undecidable for any type theory that is of interest for formalizing mathematics 
(i. e. for any T in which enough first order predicate logic can be done). Whether 
TCP and TSP are decidable depends in general on the rules of the type theory 
and especially on how much type-information is added in the term M . In all of the 
systems that we discuss , both TCP and TSP are decidable. Decidability of TCP 
and TSP conforms with the intuition that, even though we may not be able to find 
a proof of a given formula ourselves, we can recognize a proof if presented to us. 

Software (like our proof development system) is a priori not reliable, so why 
would one believe a system that says it has verified a proof? This is a good question. 
The pioneer of computer verified proofs, N.G . de Bruijn, has given a satisfactory 
answer. We should take care that the verifying program (the type checker) is a 
very small program; then this program can be verified by hand, giving the highest 
possible reliability to the proof checker. This is the so called de Bruijn criterion. 

A proof assistant satisfies the de Bruijn criterion if it generates 'proof
objects' (of some form) that can be checked by an 'easy' algorithm. 

In the late sixties de Bruijn made an impressive start with the technology of proof 
checking. He designed formal systems for the efficient representation of proofs al
lowing a verifying algorithm that can be coded in 200 lines of imperative code. 
These systems were given the collective name Automath, see [Nederpelt, Geuvers 
and de Vrijer 1994] for an up to date survey. As to the point of reliability, de 
Bruijn has remarked that one cannot obtain absolute certainty. There always can 
be some kind of electronic failure that makes a proof-assistant accept a wrong proof 
(actually this is very unlikely; there is a bigger chance that a correct proof is not 
accepted). But formalized proofs provide results with the highest possible reliability. 
The reliability of machine checked proofs can be summarized as follows. 

Proof-objects may be large, possibly several Mb; but they are self-evident. 
This means that a small program can verify them; the program just follows 
whether locally the correct steps are being made. 

We can summarize the type theoretic approach to interactive theorem proving as 
follows. 
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provability of formula A 

proof checking 

interactive theorem proving 

'inhabitation' of the type A 

type checking 

interactive construction of a term of 

a given type . 

So the decidability of type checking is at the core of the type-theoretic approach to 
theorem proving. 

2.2. Propositions as types 

It is possible to represent proofs in a different and more efficient way as formal 
terms. The intuition behind this is inspired by intuitionistic (constructive) logic. 
In this philosophy a proof of an implication A ::> B is a method that transforms a 
proof of A into a proof of B. A proof of A & B is a pair (p, q) such that p is a proof 
of A and q one of B . A proof of AV Bis a pair (b,p}, where bis either 0 or 1 and 
if b = 0, then p is a proof of A; if b = 1 then p is a proof of B. There is no proof of 
.l, the false proposition. A proof of 'ixEX.Ax is a method p that t ransforms every 
element aEA into a proof of Aa. Finally a proof of 3xEX.Ax is a pair (a ,p) such 
that aEA and p is a proof of Aa. Here, :>,& , V,.l,'i and 3 are the usual logical 
connectives and quantifiers. Negation is defined as ..,A =A ::> .l. 

The propositions as types interpretation intuitively can be defined as follows . A 
sentence A is interpreted as [A], defined as the collection of proofs of A. Then, 
according to the intuitionistic interpretation of the logical connectives one has 

[A::>B] [A]__, [BJ 

[A&B] [A] x [BJ 

[AVE] [A]U[B] 

[_!_] 

[V'xEX.Ax] Ilx :X.[Ax] 

[3xEX.Ax] Ex:X.[Ax] 

The operations --+, x and U are respectively the formation of functions spaces, 
Cartesian products and disjoint unions. Intuitively this means the following. 

p __, Q 

PxQ 
PuQ 

{! I 'lp:P.f(p) : Q}; 

{(p,q) I p:P and q:Q); 

{(O,p) I p:P} u {(I , q) I q:Q) . 
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Furthermore, 0 is the empty type. Finally, the (Cartesian) product and sum of a 
family { Px h:A of types are intuitively defined as 

IlxoA.Px = {!o(A __, U.,APx) I \lxoA (fx 'Px)) 

ExoA.Px = {(x , p) I xoA and po(Px)). 

Now, a statement A is provable if [A] is inhabited, i.e. if there is a p such that p: A 
holds in type theory. 

2.3. Examples of proofs as terms 

To get an idea of what proof-objects really look like and how type checking works, 
we look at an example: we construct a proof-object and type-check it. This example 
should be understandable without any further knowledge of the typing rules: some 
basic 'programmers' intuition of types should suffice. 

The first non-trivial example in predicate logic is the proposition that a binary 
antisymmetric relation is irreflexive. 

Let X be a set and let R be a binary relation on X. Suppose 

Vx, yEX.Rxy :::> -.Ryx. 

Then VxEX.-,Rxx. 
We want to formalize this . In the type theory we have two universes, Set and 

Prop. The idea is that a term X of type Set, notation X :Set , is a type that represents 
a domain of the logic. (In logic one also speaks of sorts or just sets.) A term A:Prop, 
is a type that represents a p1·oposition of the logic, the idea being that A is identified 
with the type of its proofs. So A is provable if we can find a term JJ: A. 

Based on this idea, a predicate on X(: Set) is represented by a term P: X -7Prop. 
This can be understood as follows. 

t(:X} satisfies the predicate P iff the type Pt is inhabited, 

i.e. there is a proof-term of type Pt. So the collection of predicates over X is 
represented as X -7Prop and similarly, the collection of binary relations over X is 
represented as X-+(X-tProp) . 

One of the basic operations of mathematics (even though it is not formally treated 
in ordinary logic!} is defining. This is formally captured in type theory via a kind 
of ' let' construction. Let us give some definitions. 

Rei 

AntiSym 

lrrefl 

AX'5et .X ->(X -> Pmp), 

AX5et .ARo(Rel X).\lx,yX.(Rxy) :::> ((Ryx) :::> .L), 

AX5eURo(Rel X) .\lxoX.(Rxx) :::> .L. 

These definitions are formal constructions in type theory with a computational be
havior, so-called 0-reduction, by which definitions are unfolded. Rei takes a domain 
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X and returns the domain of binary relations on X: 

(RelX) __,, (,\X,Set.X-->(X-->Prop))X 

-->p X-->(X ->Prop). 

So by one definition unfolding and one .B-stcp we find that (Rei X) 
X--+(X--+Prop). Similarly, for X: Set and Q: X--+(X-JoProp), 

(Ant;$ymXQ) = 'lx , yX(Qxy) ::> ((Qyx) ::> 1-), 

(lrrefl XQ) = 'l,,X.(Qxx) ::> 1-. 

The type of AntiSym is IIX:Set.(X --+(X -+ Prop))-+ Prop, the type of operators that, 
given a set X and a binary relation over this X, return a proposition. Here we 
encounter a dependent type, i.e. a type of functions f where the range-set depends 
on the input value. See the previous Section for a set-theoretic understanding. 
The formula 'Vx , y:X.(Qxy) :> ((Qyx) :> ..L) is translated as the dependent function 
type 

Il x,yX(Qxy)-->((Qyx)-->1-). 

(For now, we take .l to be some fixed closed term of type Prop. ) Given the (informal) 
explanation of the II-type given before, we observe the following two rules for term
construction related to the dependent functions type. 

•If F: Il x:A.B and N: A, then FN : B[N/x], (B with N substituted for x). 
• If M ; B under the assumption x: A (where x may possibly occur in Mor B), 

then Ax:A.M : Il x:A .B 
Let's now try to prove that anti-symmetry implies irreflexivity for binary relations 
R . So, we try to find a proof-term of type 

TIXSet .nR,( Rel X)(A nt iSym X R)-->( lrrefl X R). 

We claim that the term 

,1x,set..1K(Rel X) . .lldAntiSym X R).,\,,X.,\q,(Rxx).hxxqq 

is a term of this type. We have encountered a TCP; the verification of our claim is 
performed by the type-checking algorithm. Most type-checking algorithms work as 
follows: 
l. First solve the TSP 

(compute a type C of the term 
,\X Set..IK(Rel X) . .lldAntiSym X R).,\,,X.,\q,(Rxx).hxxqq) , 

2. Then compare the computed type with the given type 
(check if C =p6 TIXSet.TIK(Rel X)(AntiSym X R)-->( lrrefl X R)). 

So a TCP is solved by solving a TSP and checking an equality. Note that this 
method is only complete if types are unique up to equality: if M has type A and 
type B, then A =f36 B. For the algorithm to terminate we must assure that TSP 
and equality checking are decidable. 

For our example we solve the TSP step by step; there are two main steps 
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1. For a .\-abstraction ,\x:X.M, we first compute the type of M, under the extra 
condition that x has type X. Say we find B as type for M. Then ,\x:X.M 
receives the type IIx:X.B. 

2. For an application F N, we first compute the type of N. Say we find A as type 
for N . Then we compute the type of F , say C. Now we check whether C reduces 
to a term of the form ITx:D.B. If so, we check if D =(J6 C . If this is the case, 
FN receives the type B[N/x]. 

If a check fails, we return 'false', meaning that the term has no type. 
For our example term .\X:Set.,\R:(Rel X) .,\h:(AntiSym XR) .,\x:X.,\q:(Rxx).hxxqq, 
we compute the type 

IlXoSet .IlRo(Rel X). Il ho(Ant iSym X R) .IlxoX.Ilqo(Rxx).C, 

with C the type of hxxqq under the conditions X:Set , R:(Rel X), h:(A nt iSym X R), 
x:X and q:(Rxx). Now, h : (A ntiSym X R), which should be applied to x, of type 
X . We reduce (A nt iSym XR) until we obtain II x,y:X.(Rxy)-+((Ryx)-+.L). So, hx 
receives the type IIy:X .(Rxy)-+((Ryx)-+.L). The term hx has a II-type with the 
right domain (X), so it can be applied to x, obtaining 

hxx' (Rxx)->((Rxx)-H). 

This again can be applied to q (twice), obtaining hxxqq: .l, so TSP finds as type 

IlXoSet.IlR(Rel X).Ilk(AntiSym X R).IlxoX.Ilqo(Rxx) . .L. 

We easily verify that this type is ,BO-convertible with the desired type and conclude 
that indeed 

>.X oSet.>.Ro(Rel X) .>.ho(AntiSym X R).>.xoX.>.qo (Rxx).hxxqq 

IlX'5et. IlR(Rel X).(Ant iSym X R)->(1,,efl X R) . 

By convent ion, 'r/ and II will often be used as synonymous, and similarly ::> and -+. 
;,From this example, one can get a rough idea of how type synthesis works: 

the structure of the term dictates the form of the type that is synthesized. For 
the type synthesis algorithm to terminate we need the convertibility =(J6 to be 
decidable. This is usually established by proving that ,BO-reduction is Normalizing 
(every term M ,BO-reduces to a normal form) and Confluent (if M ,B&-reduces to 
both P1 and P2 , then there is a Q such that both Pi and P2 ,BO-reduce to Q) . 
Then the question "M=(J6N?" can be decided by reducing both M and N to 
normal form and comparing these terms lexically. It should be pointed out here 
that comparing normal forms is often a very inefficient procedure for checking 
convertibility. (See [Coquand 1991] for a different approach to checking conversion 
in a dependent type theory.) Therefore, the convertibili ty checking algorithm will 
reduce only if necessary. (There is always a 'worst case' where we really have to go all 
the way to the normal forms.) In particular, this means that definitions are unfolded 
as little as possible: although the real complexity of =(J6 is in the ,B-reductions, 
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the definitions 'hide' most of the /3-redexes. This can be seen from the fact that 
proof-terms are almost always in ,8-normal form (but certainly not in &-normal 
form). See [COQ 1999] and [van Benthem Jutting, McKinna and Pollack 1994] 
for more information on type-checking and checking convertibili ty in dependent 
type theories . In Section 3.2 we discuss in detail a type-checking algorithm for one 
specific type system. 

2.4. Intermezzo: Logical frameworks 

What ha.s been described in the previous two Sections is sometimes called the di
rect encoding of logic in type theory. The logical constructions (connectives) each 
have a counterpart in the type theory, implication, for example, is mirrored by the 
arrow type in type theory. Moreover, the elimination and introduction rules for a 
connective also have their counterpart in type theory (>.-abstraction mirrors impli
cation introduction and application mirrors implication elimination) . In the rest of 
this paper we restrict ourselves to this direct encoding. There is, however, a sec
ond way of interpreting logic in type theory, which is called the logical frameworks 
encoding or also the shallow encoding. As the name already indicates, the type 
theory is then used as a logical framework, a meta system for encoding a specific 
logic one wants to work with . The encoding of a logic L is done by choosing an 
appropriate context r L i in which the language of L (including the connectives) 
and the proof rules are declared. This context is usually called a signature. In the 
direct encoding, a context is used for declaring variables (e .g. declaring that the 
variable x is of domain A) or for making assumptions (by declaring z : cp, for cp 
a proposition, we assume cp). In logical frameworks, the context is used also to 
'declare' the logic itself. One of the reasons that (even rather simple) type systems 
provide a very powerful logical framework is that type theory is very accurate in 
dealing with variables (binding, substitution, a-conversion). Hence, when encoding 
a logic, a ll issues dealing with var iables can be left to the type theory: the logical 
framework is used as the underlying calculus for substitution and binding. How 
this works precisely is illustrated by three small examples . For further details on 
logical frameworks we refer to [Pfenning 2001] (Chapter 17 of this Handbook) or to 
[Harper, Hansell and Plotkin 1993, Pfenning 1991, de Bruijn 1980]. It should also 
be remarked here that, even though we do not treat the technical details of logical 
frameworks based on type theory and the encoding of logics in them, much of our 
discussions also apply to these type systems, notably the issue of type checking. We 
now recapitulate the main differences between the two encodings. 

Direct encoding Shallow encoding 

One type system ....., One logic One type system ,..., Many logics 

Logical rules ,...., type theoretic rules Logical rules ,.._. Context declarations 

The encoding of logics in a logical framework based on type theory will be shown 
by giving three examples 
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1. The {:>}-fragment of minimal propositional logic, 
2. The{:>, V}-fragment of minimal predicate logic, 
3. The untyped ,\-calculus. 

Minimal propositional logic 
The formulas are built up from atomic ones using implication (:>) as only logical 
operator. In order to translate propositions as types, one postulates the 'signature': 

prop: type 

imp : prop-tprop-+prop 

Now define the encoding of propositions [-) as follows. 

[A ::>BJ = imp[AJIBJ . 

(2.1) 

(2.2) 

Then one has for example [A ::> AJ = imp[A][AJ and [A ::> A ::> BJ = 
imp[A](imp[A][B]). The type prop can be seen as the type of 'names' of propositions: 
a term of type prop is not a proposition itself, because it can not be inhabited (i.e. 
proved), as it is not a type. In order to state that e.g. [A :> A] is valid, one intoduces 
the following map: 

T prop-ttype. (2.3) 

The intended meaning of Tp is 'the collection (type) of proofs of p', so T maps a 
'name' of a proposition to the type of its proofs. Therefore it is natural to interpret 
'p is valid ' by 'Tp is inhabited'. In order to show now that tautologies like A:> A 
are valid in this sense (after translation), one postulates 

imp.intr 

imp.el 

ITp, q, prop.(Tp-> T q)-> T(imp p q), 

ITp ,q, prop.T(imp pq)->Tp->Tq. 

Then indeed the translation of e.g. A :>A, which is im p(A][A], becomes valid: 

imp_intr[AJIA](.\"'T[AJ.x), T(imp[AJIA]), 

(2.4) 

(2.5) 

since clearly (>.x:T[A].x) (T[A]-tT[A]). Similarly one can construct proofs for 
other tautologies (e.g. (A :> A :> B) :> A :> B. In fact one can show by an easy 
induction on derivations in the logic L that 

I-PR.OP A => EPROP, a1 :prop,. , a 11 :prop I- p: T[A], for some p. 

Here {a, ... ,a11 } is the set of basic proposition symbols in A and EPROP is the 
signature of our minimal propositional logic PROP, i. e. the set of declarations (1-5) . 
Property (6) is called adequacy or soundness of the encoding. The converse of it, 
faithfulness (or completeness), is also valid, but more involved to prove. 
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Minimal pn~dicate logic 
We consider the {:::> , 't:/}-fragment of (one-sorted) predicate logic. Suppose we have 
a logical signature with one constant, one unary function and one binary relation. 
This amounts to the following (first part of the) type theoretic signature. 

prop type, (2.6) 

A type, (2.7) 

A, (2 .8) 

A-+A, (2 .9) 

R A-tA-tprop , (2.10) 

imp prop-t prop-tprop, (2.11) 

imp_intr n p,q: prop. (Tp-+Tq)-+T(;mp pq) , (2 .12) 

imp_el np, q : prop.T(;mp p q)-+ Tp-+ Tq . (2.13) 

This covers the language and the implicational part (copied from the logic PROP). 
Now one has to encode 't:/, which is done by observing that 't;/ takes a function from 
A to prop, 't;/ : (A-t prop)-tprop. The introduction and elimination rules for 't:/ are 
then remarkably straightforward . 

fora II 

foralUntr 

foralLelim 

(A-t prop)-tprop , 

nP:A-+prop.(n x:A. T(Px))-+ T(forallP), 

nP:A-+ prop.T(fora ll P)-+nx:A.T(Px). 

Now we t ranslate universal quantification as follows. 

The proof of an implication like 

\lz:A(\lx, y:A .Rxy) ::l Rzz 

is now mirrored by the proof-term 

(2 .14) 

(2 .1 5) 

(2 .16) 

foralUntr l-1 ( >.z:A.; mpjntr l-11-1 ( !.h: T ([\Ix, y:A . Rxy]) . fora lLel ;m 1-1(fora ll _el;m 1-lhz))), 

where we have replaced - for readability - the instantiations of the IT-type by [-]· 
This term is of type 

fora II ( >.z:A. ;mp(fora II ( >.x: A. (fora II ( >.y :A. Rxy)))) (Rzz)). 

Again one can prove adequacy 

1-PRED IP ::} ErnEo, x1 :A,. , xn:A !- p: T[IP], for some p, 

where {x 1 , ••• ,x11 } is the set of free variables in IP and EPnED is the signature 
consisting of the declarations (6- 16) . Faithfulness can be proved as well. 
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Untyped ,\-calculus 
Perhaps more unexpected is that untyped ,\-calculus can be modeled in a rather 
simple type theory (the same as for PRED and PROP). The needed signature 
I:1ambda now is 

D 

app 

abs 

type; 

D->(D-> D); 

(D->D)-> D. 

(2.17) 

(2 .18) 

(2 .19) 

Now every variable x in the .\-calculus is represented by the variable x : D in the 
type system. The translation of untyped .\-terms is defined as follows. 

[x] x; 

[PQJ = app [P] [QJ; 

[.\x .P] = abs (.\X'D.[P]) . 

We now have to express that e.g . (>.x.x)y = y, and then we have to prove that this 
equality is valid. As to the statement of equalities , one declares a term 

eq:D--tD--ttype. (2.20) 

The >.-calculus equation P = Q is now translated as the type eq [P] [QJ. The 
validity of this equation is by definition equivalent to the inhabitation of this type. 
In order to ensure this we need the following axioms. 

refl Ti x:D.eq x x, (2.2 1) 

sym Tix, y:D.eq x y--teq y x, (2.22) 

trans Tix,y,z:D.eq x y--teq y z--teq x z, (2.23) 

n x, x 1
, z, z': D.eqxx1 --teqzz'--teq(app z x)(app z' x'), (2.24) 

xi ITF,G, D-> D. (ITx, D.eq(Fx)(Gx))->eq(a bs F)(abs G), (2 .25) 

beta ITF, D->D. rrx, D.eq (a pp(a bs F)x)(Fx) . (2 .26) 

Now one can proof the adequacy 

P =13 Q ~ E1ambda, X1 :D , .. , Xn :D I- p: eq [P] (Q], for some p. 

Here, x 1 ,. • , Xn is the list of free variables in PQ and E 1ambda is the signature for 
untyped >.-calculus, consisting of declarations (17-26). Again the opposite implica
tion, faithfulness, also holds. 

The three examples show that using type theories as logical framework is flexible, 
but somewhat tiresome. Everything has to be spelled out. Of course, in a concrete 
implementation this can be overcome by having some of the arguments inferred 
automatically. Note that for each formalizat ion the faithfulness has to be proved 
separately. 
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2.5. Functions: algorithms versus graphs 

In type theory there is a type of functions A-tB, for A and B types. Which funct ions 
there are depends on the derivation rules that tell us how to construct functions. 
Usually (certainly for the systems in this paper) we see three ways of constructing 
functions . 

• Axiomatically declare f: A-tB for a new symbol f . 
• Given that M : B in a context containing x : A (and no other dependencies on 

x in the context), we construct, using the ,\-rule, 

.\x•A.M' A-;B. 

•Via primitive recursion: given b: Band f: nat-+B-tB we can construct 

Reeb f: nat-+B. 

These functions also compute: there are reduction rules associated to them , the {3 
and l rules: 

(.\x•A .M)N -?p M[N/x], 

Recb/O _., b, 

Recbf (S+x) _,, fx(Recbfx). 

So, terms of type A-+B denote algorithms, whose operational semantics is given by 
the reduction rules. In this view we can see a declaration f : A-+B as an 'unknown' 
algorithm. 

At the same time the set-theoretic concept of a function as a graph is a lso present 
in type theory. If R: A-tB-t Prop (Risa binary relation over A and B) and we 
have a proof-term of type 'lfx:A .3!y:B.Rxy, then we can of course view this R as 
a function (graph) in the set-theoretic way. Note, however, that we have no way 
of really talking about the 'R-image' of a given a : A, because we can't give it 
a name (like f(a)). In terms of formal logic, the only way to use it is under an 
3-elimination, where we have given the y a name - locally - and we know it to be 
unique. So the set-theoretic concept of 'function' doesn't give us an algorithm that 
computes. To remedy this situation one can add a constant - Church (1940] uses 
the t for this - that extracts a 'witness' from a predicate. In Church's higher order 
logic 1 if Pisa predicate over A (i .e. P: A-tProp in type-theoretical terms) , then 
tP: A and there is an axiom saying 'If P:A-+Prop(3!x:A.Px)-+ P(iP). So, if there 
is a unique element for which P holds, then tP denotes this element, otherwise tP is 
an arbitrary unspecified element. Obviously, the latter aspect of the t is not so nice, 
especially in a system with inductive types like nat , where we now will encounter 
closed terms of type nat (e.g. t(~ 0)) that are not in constructor form , i.e. equal to 
5 110 for some nEIN. 

In constructive systems, there is a different way to obtain a 'witness' from a proof 
of an existential statement: if 'lfx :A3y:B.Rxy holds constructively, then there is a 
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function (algorithm} that computes they from the x. (This could almost be taken 
as a definition of what it means for a logic to be constructive.) 

If p is a closed proof- term of type "rfx:A3y:B .Rxy, then p contains a term 
f:A -+B and a proof-term of type "rfx:A.Rx(fx). 

Note that this is a meta-theoretic property of constructive systems: there is not 
(necessarily) a function inside the system that extracts the f:A-tB from the proof
term p. In some systems, most notably the constructive type theories of Martin-L6f 
([Martin-L6f 1984], [Nordstr6m et al. 1990)) , this property has been internalised 
by interpreting an existential fomula 3y:B.r.p as a E-type Ey:B.r.p, consisting of 
pairs (b, q} with b : B and q : r.p[b/x]. So, the only way to construct a term of 
the E-type L,y:B.r.p is by giv ing a b: B for which r.p[b/x] holds. From a term t : 
Ey:B.r.p, one can extract the two components by projections: 1f 1 t : B and 7r2 t : 
r.p[7r 1 t/x]. These are the E-introduction and the L.-elimination rules, respectively. 
This implies that from a proof-term p: "r/x:A3y:B.Rxy, we can immediately extract 
the function f : A-+B defined by >.x:A.1r1 (px) and we can prove for this f that 
"r/x:A.Rx(fx) holds . (The proof-term is >.x:A.7r2 (px).) The extracted function also 
has a proper computational behavior: a closed proof-term p : "r/x:A3y:B.Rxy has 
the form >.x:A.(t , q}; the function extracted from this p is (indeed) >.x:A.t. 

The internalisation of the (constructive) existence property via a E-type may 
seem a neat way to solve the problem of 'functional-relations-not-being-functions'. 
However, every advantage has its disadvantage, in this case that we loose the imme
diate connection between type theory and logic. The reason is that with the E-type 
we can construct objects that depend on proofs, a feature alien to ordinary logic. 
The simplest example is where we have a proof p of Ex:nat.A, from which we get 
the object 71" 1 p : nat. Ordinary logic is built up in stages, where 

• in the fi rst stage one defines what the domains and the terms of the domains 
are; 

• in the second stage one defines the formulas (or one singles out the formulas 
from the collection of terms); 

• in the third stage one defines what a proof is . 
This built-up makes it impossible for objects to depend on proofs, for the simple 
reason that the objects were already there before we even thought about proofs. 
Note that Church ' approach, using the t. operator, conforms with the conception 
of ordinary logic that we have just sketched: the object t.P does not depend on 
the proof of 3!y:A.Px, but only on the object P. Choosing a type theory in which 
objects do not depend on proofs has some clear advantages if we want to explain 
and understand the system in terms of ordinary logic. We come back to this later in 
2.9. Here we just remark that if a type theory is to be used as a basis for a theorem 
prover , a clear connection to some well-known standard logic is desirable. 

We conclude that, if we look at functions in type theory, there is a clear dis
tinction between algorithms (f : A--tB) and graphs (R : A--tB--t Prop such that 
\fx:A.31y(Rxy) holds). Even if we allow to extract from a proof of "r/x:A.3!y(Rxy) an 
f : A-tB, there is still a clear di~tinction: the proof is not the same as the function. 
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2.6. Subject Reduction 

The property of Subject Reduction (SR) can be seen as the 'sine qua non' of type 
theory. It states that the set of typed terms of a given type A is closed under 
reduction. More formally: if M : A and M --* N, then N : A. For A representing a 
data type, we can understand this as saying that A is closed under evaluation . The 
rules for evaluation are (3, 0 and t. that we have already encountered. We ill ustrate 
the use of reduction by an example. 

Suppose we have as definition plus := Ax,y:nat .Rec x(Az: nat. S+)y. Then the 
'value' of the expression plus 10 is computed by first unfolding the plus (one 0-
reduction step), then performing two ,8-steps and then one t-step, to obtain 1. The 
Subject Reduction property says that all expressions in this computation are of 
type nat . 

In a proof-term, reduction captures the well-known proof-theoretical notion of 
cut-elimination. A cut in a proof is a situation where an introduction rule (I) for 
a connective is immediately followed by an elimination rule (E) for that connec
tive. It is then possible to make a 'shortcut', eliminating the consecutive applica
tion of the (I) rule and the (E) rule. (Note that this may not always make the 
proof literally shorter.) Suppose we have the proof-term Ah:A--tA--tB.Az:A.hzz : 
(A--tA--tB)--t(A--tB), corresponding to the standard natural deduction proof of 
this fact, ending with an introduction rule. Now, if we also have a proof q : A--tA--t B 
we can eliminate the implication obtaining (Ah:A--tA--tB .,\z:A .hzz)q: A--tB. If we 
do one /)-step we eliminate the cut obtaining the proof-term ,\z:A.qzz : A--tB. So, 
for proof-terms, 

the Subject Reduction property states that cut-elimination is correct in 
the sense that if p is a proof of A and we obtain p' by eliminating some 
cuts from p, then also p1 is a proof of A. 

In practice, we seldom wish to perform ,6-reduction on proof-terms: once we have 
proved a result (i.e. we have constructed a term p : A), we are main ly interested in 
its statement (the type A) and the fact that there is some proof (inhabitant) of it. 
The proof is only inspected if we want to study its structure (e.g. to try to reuse it 
for proving similar statements) . The actual situation is that once we have proved 
a lemma, say we have constructed ,\h:A--tA--tB.Az:A.hzz: (A--tA--tB)--t(A--tB) 
as above, we will save this lemma under a name, say lemma1 , and we will only 
refer to th is 'name' lemma1 . In type theory, what happens is that we introduce a 
definition lemma1 := ,\h:A--tA--tB.,\z:A.hzz and we use lemma 1 as a constant of 
type (A--tA--tB)--t(A--tB} . It is a defined constant, but in implementations it will 
be opaque, meaning that it will never be unfolded by 0. 

2. 7. Conversion and Computation 

We have already encountered three notions of computation: ,6-, L- and 0-reduction. 
For most type theories these reduction relations together are confluent and normal-
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izing, yielding a decidable conversion relation =[Jtti on the set of well-typed terms. 
This decidability also makes the type checking algorithm work, see Section 2.1. We 
will look more closely at the use of conversion. 

Suppose again we have the definition of plus as given above and we want to 
prove 2 > O from p: Vx,y,z:nat.(x > (plusyz)) -t (x > z) and q: 2 > 1. Now 
p210: (2 > (plus 10)) -t (2 > 0) and we want to apply this proof to q to obtain 
the proof-term p2 1 Oq: (2 > 0). The application can only work if we first reduce 
the type (2 > (plus I 0)) -> (2 > 0) to (2 > I ) -> (2 > 0), which is done by one 
0-reduction (unfolding the definition of plus ), two /3-steps and a t.-step. We can 
depict this in a deduction as follows. 

p : V'x,y,z: nat .(x > ( plusyz)}-t (x > z) 

p2 l 0' (2 >( plus I 0))-> (2 > 0) 
-----------'----' (conv) 

p2 l 0' (2 > I)-> (2 > 0) q' (2 >I) 

p210q' (2 > 0) 

Here we see an application of the conversion rule: 

M"P .p,Prop 
(conv) M : 1/J if '{J =p.o 1/J 

In the example above, M is p2 10, '{J is (2 > (plus 10)) -+ (2 > 0) and 1/J is 
(2 > 1) -t (2 > 0). The proof-term M is left unchanged under the transition 
from '{J to 1/J. This poses no problem for the type checking algorithm, because the 
conversion =p,6 is decidable. (So, if we are given a term M and we want to check 
whether M is of type 1/J we only have to check whether M has a type and if so, 
verify whether it's convertible with 1/J.) In case the equality in the side-condition 
to the conversion rule is not decidable (which is the situation in the type theory 
of Nuprl, [Constable et al. 1986]), the conversion from type rp to 1/J would have to 
leave a 'trace' in the term M in order to make type checking decidable. (The trace 
could be the reduction sequence from '{J to 1/J.) One could also leave a trace of the 
conversion in order to help the type checking algorithm, but this is usually not 
done: it makes proof-terms unnecessarily complicated. Moreover we want to follow 
the so-called Poincare principle, which can be stated intuitively as follows. 

There is a distinction between computations and proofs and computations 
do not require a proof. 

This implies, for example, that the equality of plus 1 0 and 1 does not require a 
proof: plus 1 0 and 1 are computationally equal, so plus 10 = 1 follows trivially 
(from the reflexivity of=). The power of the Poincare principle depends on the 
expressivity of the type theory in terms of algorithms that can be written. Imagine 
the situation where we have a class of formulas that can be encoded syntactically in 
our type system. That is, we have a (inductive) type 'Class-of-Form ' together with 
a 'decoding function' Dec: Class-of-Form-t Prop such that every formula T: Prop 
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in our class has a syntactic representation t : Class-of-Form with Dect = (Jdi T. 
Suppose that we can write a decision algorithm in our type system, i.e. we have 
a term Check : Class-of-Form~Prop such that if Check t =p,6 T, then t encodes a 
provable formula from our class. (T is the proposition with one unique proof, true.) 
In more precise type-theoretic terms: suppose we have a proof-term ok with 

ok 'lft,(lass-of-fo,m. (Check t) --> (Dec t) . 

Then, to prove that a formula T : Prop from our class is provable, we only have to 
find its encoding t: Class-of-Form and then 

okttrue: T. 

ifT is indeed provable {inhabited), which can be verified by the type checker. In this 
example, the main task of the type checker is to execute the algorithm Check. This 
use of the Poincare principle shows how automated theorem proving can be done 
(safely) inside type theory. This technique is usually called reflection (reflecting 
(part of) the language in itself) . The origins date back to Howe [1988]. It has 
been used succesfully in the Coq system to write a tactic for deciding equality in 
ring-structures. See also [Barthe, Ruys and Barendregt 1996] - where it is called 
the ' two-level approach' - and [Oostdijk and Geuvers 2001]. To get really fast 
automated theorem proving, it is advisable to use a special purpose automated 
theorem prover, which has the extra adavantage that one doesn't have to program 
(and prove correct1) the decision procedures oneself. If one uses reflection (and the 
Poincare principle) one obtains a medium fast descision procedure but very reliable 
proof-terms, which can be checked independently. 

2. 8. Equality 

Note that we have not included 77-reduction in the conversion rule, but just (J, 6 
and t. This may seem remarkable, because for the untyped ,\-calculus, many nice 
results of (J-reduction (like confluence) extend to (371. This is however not the case 
for typed ,\-calculus. The snag lies in the fact that our typed terms have a type 
attached to the bound variable in the ,\-abstraction (.\x:A.M). This information 
is crucial for the type checking algorithm (without it, type checking in dependent 
type theory is undecidable [Dowek 1993]), but it complicates the combination of f3 
and 77. For example consider ,\x:A.(Ay:B.y)x, 

,\xoA.(,\y,B.y)x --> p ,\x,A.x 

,\x,A.(,\y,B.y)x -->, ,\y,B.y 

The terms on the right hand side have a common reduct only if A and B do. 
This complication of 1J was already known to the Automath community [Nederpelt 
1973]; Confluence and Normalization for types systems from the Automath family 
was proved by Daalen [1980]. For a study and proof of the general situation see 
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[Geuvers 1992}, [Geuvers 1993]. For a study of type theory with A-terms without 
types attached to the bound variables, see [Barthe and S~rensen 2000], where it is 
shown that the type checking (notably its undecidability) is not completely hopeless. 
In [Magnusson 1994], an implementation of a proof assistant based on such a type 
theory (without types attached to the bound variables) is described. 

There are several other ways of extending the equality in the conversion rule. 
A prominent example is the extensional equality on functions. In mathematics, if 
f,g: A--tB, the f and g would be considered to be equal if they have the same 
graph, i.e. f = g iff 't/x:A(! x = g x) . If we want to view the functions not so much 
as algorithms, but more abstractly as graphs, the inclusion of extensional equality 
in the convertibility (as side condition in the conversion rule) would be very natural. 
If we want to do this, it is required that we introduce an equality judgment of the 
form 

rf-M =No A. 

Before discussing extensionality further, we fi rst focus on the different notions of 
equality. 

Equality as a judgment or as a type 
As rules for deriving an equality judgment we would have /3, 0 and t plus the normal 
rules for making it an equivalence relation (reflexivity, symmetry, transitivity) plus 
rules for making the equality compatible with the term-constructions. For example, 
we would have 

r f- .\xoA.M , IlxoC.B r f- N , C 

(/l) r f- (.\xoA.M)N = M[N/x]' B[N/x] 

(J) r 1,co=Mo.4,r2 f-coB 

rf-c=MoB 

(reft) 
rf-M oB 

rf-M=MoB 

(trans) 
rf-M=NoB rf-N=PoB 

rf-M=PoB 

r f- M = N ' IlxoA.B r f- P = Q, A 
(app-comp) 

r f- MP=NQ' B[P/x] 

(abs-comp) r, xoA f- M = N ' B r f- A = C ' D 
r f- .\xoA.M = !.xoD.N' IlxoA.B 

The conversion rule then takes the following form 

rf-MoA rf-A=B 
(conv)-------

r f- Mo B 
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The addition of extensionality would amount to the rule 

(ext) r f- M,N' A-;B r f- p' ilxoA.(Mx = Nx) 

rf- M = N ' A->B 

In the (ext) rule, the equality in the premise (=a)is an equality that can be proved; 
we could call it a logical equality, but in type-theory it is usually called book equality, 
as it is thought of as the user-defined equality in 'the book>. (In Automath systems, 
the notion 'book' has a very precise formal meaning; it corresponds roughly to 
the user-defined context that represents some specific theory.) The equality in the 
conclusion of the (ext) rule is the ' internal equality' of the type system, usually 
called the definitional equality. This definitional equality can be represented by 
a judgment itself (as above) , but often it is represented as a 'convertibility side 
condition ', like in 2.7. In the latter case, the convertibility A ={3oi Bis understood 
as an equality on a set of 'pseudo terms', including the well-typed ones. Let us 
summarize the different equal ities . 

1. Definitional equality. The 'underlying equality' of the type system. Captures /3, 
0 and, if present, also t. Can be judgemental (i.e. built into the formal system) 
or a convertibility side condition. 

2. Book equality. The 'equality provable' inside the type system. If M =A N is 
a book equali ty, then it is a type (M =A N : Prop for M, N : A) and we can 
try to find a proof-term inhabiting it (p: M =A N) . Such an equality can be 
defined by the user. 

Book equality comes in various flavours, depending not only on the user's choice, 
but also on the type theory, because most type theories (and certainly their im
plementations) have a 'built-in' or 'preferred' equality. We give a short overview of 
some options. First of all, we want the following from a book-equality. 

• The equality should be an equivalence relation on the carrier type: for A : Set , 
=A: A--t(A--t Prop) should be an equivalence relation . 

• Substitution property. We want to replace 'equal terms in a proposition' . In 
type theoretical terminology, we want the following rule to be derivable (for 
some term construction S(_, _)). 

r f- N , A(t) r f- e , t =A q 

r f- S(N, e) 'A(q) 

To achieve this we distinguish the fo llowing th ree treatments of equality. 
1. Leibniz equality, defined in higher order logic. We want to say (following Leib

niz) that t =A q if for all predicates P over A, P holds fort iff P holds for q. 
In type theory: 

t =A q o= ilPoA-> Pmp(P t)-;(P q). 

Note that this equali ty looks asymmetric; however , it can be shown that =A is 
symmetric. 
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2. Inductively defined equality. Equality =A: A--t(A--t Prop) is the 'smallest' re
flexive relation on A, i.e. the 'smallest' relation R on A for which Vx:( R x x) 
holds. In type theoretic syntax this would look like 

Inductive EqA : A--tA--t Prop := 

Rell ' Ilx,A.( Eq x x) . 

This specific form of definition , to be treated in more detail in Section 3.8, says 
that Refl is the only constructor for the inductively defined relation Eq. This is 
made precise by an induction principle that comes along with this definition. 

3. Special type with special rules, roughly reflecting the inductivity of =A, as in 2. 
In Martin-LOPs type theory (see [Martin-Lor 1984], [Nordstrom et al. 1990]), 
equality is taken as a basic type constructor: 

r f- A' Set ff-M'A 

r ,x,yA f- (Id Ax y) 'Set r f- (ReflAM)' (Id AM M) 

We don 't give the full elimination (induction) principle, but only one of its 
instances: 

f f- P' A-> Set f f- q' (Pa) f f- e' (IdA ab) 

r f- (;drecqe), (Pb) 

Note that in the third approach, the identity type (Id A ab) is of type Set, and not of 
type Prop. This is not a peculiar aspect of Martin-LOPs approach to equality, but 
a consequence of his approach to logic in general: there is no distinction between 
sets and propositions; both 'live' in the universe Set (and hence there is no universe 
Prop). 

There are some clear differences, e.g. Leibniz equality requires impredicativity to 
be definable, while the inductively defined equality requires inductive types. How
ever , each of these approaches to equality yields an equivalence relation for which 
the substitution property holds. Let us discuss one example where the different 
equalities diverge. Suppose we have defined (inductively) a map Fin : nat--tSet such 
that (Fin n) represents then-element type. Then one would like (Fin n) and (Fin m) 
to be isomorphic if n and m are equal. So we want (at least) the fo llowing to be 
derivable (for some some term construction E(-, _)). 

r f- t: (Finn) r f- e: n =nat m 

ff- E(t, e) ' (F;n m) 

For Leibniz equality ((1) above), we can not construct such a term E(t, e), because 
it allows elimination 'over Prop' only. For the inductive equality, it depends on the 
elimination rules that are allowed in the type system (e.g. the type system of COQ 
[1999] does not allow it). For Martin-LOPs type theory, the above rule is obviously 
derivable, because Prop and Set are the same universe, and one can eliminate over 
it. 
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Extensionality versus intensionality 
The defini tional equality can be intensional or extensional. In the first case, we 
do not have a derivation rule (ext), and hence equality of functions is equality of 
algorithms. In the second case, we have a derivation rule (ext), and hence equality 
of functions is equality of graphs. 

It follows from our discussion of TCP and TIP in 2.2 that the addition of the 
rule (ext) renders TCP undecidable. Viz. suppose H : (A-+B)-+ Prop and we know 
x : (H f); then x : (H g) iff there is a term of type Il x: A .f x = g x. So for this 
TCP to be solvable, we need to solve a TIP. 

The first type systems by Martin-LOf (see [Martin-LOf 1984]} were extensional. 
Later he rejected extensionality, because of t he implied undecidability of type check
ing. The interactive theorem prover Nuprl of Constable et al. [1986] is based on 
extensional type theory. It is clear that from a more classical view on mathematics 
(identifying functions with graphs in set-theoretic way), extensionality is very de
sirable. Recently, work has been done (mainly by Hofmann [1994]) showing how to 
encode (or explain) extensional equality in an intensional type theory. The idea is 
to translate an extensional type to a pair consisting of an intensional type and an 
equivalence relation on it. Here, the equivalence realtion is a user-defined (book) 
equality, built up according to the type constructions from basic equali ties, which 
are the inductively defined one for inductive types and an axiomatically declared 
one for basic variable types. 

Setoids 
A pair [A,=] with A : Set,=: A-+(.4-+Prop) such that= is an equivalence rela
t ion on A is called a setoid. In the t ranslation of extensional types to setoids (in 
intensional type theory) one has to also translate compound types, like A-+B and 
Il x:A .B, this amounts to defining the function space and t he dependent function 
space between setoids. To give the idea we treat the function space here. Given two 
setoids [A, = A] and [B, =a], we define the function space setoid [A4B,= A.!tol by 

A4B 

j = A 4 8 g 

Ef>A --tB.(Il x,y>A.(x =A y)--t((! x) =o (! y))), 

Ilx>A.(n1 f x) =a (n1 g x). 

Note that, f =A.!tB g is equivalent to Ilx,y :A.(x =A y)-+(11" 1 f x) =o (11"1 g x), 
because we require J and g to preserve =A· Given A with equality =A and B with 
equality =o, this is the 'canonical equality' on A-+B. Note that the carrier set A4B 
is not just A-+B, but the 'subset ' of those f : A-+B that respect the equalit ies RA 
and =a . Such an f is also called a setoid function from [A, =A] to [B ,=a]. In type 
theory, such a subset (of setoid functions) is represented by a E-type, consisting of 
pairs (f,p,) with (in th is case) f' A--tB, p' Il x,y>A.(x =,i y)--t((f x) =o (! y)). 
The equivalence relation= A..; B ignores the proof-terms, so (J,p) = A.!tB (!, q) holds 
for all elements of the carrier set A4B. 

The canonical equality on A-+B is the extensional equality of functions. There
fore, the interpretation of extensional type theory in intensional type theory is 
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sound. (Of course, the other type constructions still have to be verified; see 
[Hofmann 1994] for details.) It has been observed that setoids present a general 
and practical way of dealing with extensional equality and with mathematical con
structions in general. If, in mathematics one speaks informally of a 'set', we encode 
this in type theory by a 'setoid'. To show the flexibi lity we show how a quotient 
and a subset can be represented using setoids. 

Given a setoid [A, =A ) and an equivalence relation Q over this setoid, we define 
the quotient-setoid [A,=A]/Q. Note that the fact that Q is an equivalence relation 
over the setoid [A, =A] means that 

• Q: A-t(A-tProp) is an equivalence relation, 
• =Ac Q, i.e. 'v'x,yA.(x =A y)->(Q x y). 

We define the quotient setoid [A,=AJ/Q simply as [A,Q]. It is an easy exercise 
to show how a setoid function f from [A, =A] to [B, =n] that respects Q (i.e. 
'v'x,y,A .(Q x y)->((J x) =n (! y))) induces a setoid function from [A,=A]/Q to 
[B,=n]. 

Given a setoid [A, =A] and a predicate Pon A, we define the sub-setoid [A, =AJIP 
as the pair [Ex:A.(P x),=AIP], where =AIP is =A restricted to P, i.e. for q,r 
i;,,A .(P x), 

In defining a subsetoid, we do not require the predicate P to respect the equality 
=A· (That is, we do not require Vx,y: A (x = y A Px)-tPy to hold.) So, in taking a 
subsetoid we may remove elements from the =-equivalence classes. This is natural, 
because we are not interested in the elements of A, but in the =-equivalence classes. 
Consider the following example where this appears rather naturally. Let A := int x 
nat be the type of pairs of an integer and a natural number. To represent the 
rationals we define, for (x,p), (y, q):A, 

(x,p) =A (y,q) '= x(q + I )= y(p+ !). 

Now consider the predicate P on A defined by 

P (x,p) '= gcd(x,p +I)= I. 

The subsetoid [A, =AJIP is isomorphic to [A, =A] itself, but all equivalence classes 
have been reduced to a one element set. 

Subtypes and coercions 
When using setoids to formalize the notion of set, one encounters a typing problem. 
Suppose we have the setoid [A, =Al· Now, A: Set, but the setoid [A, =A] is not of 
type Set , but of type EA:Set .A-t(A-t Prop) Hence we can not declare a variable 
x : [A, =A] (because we can only declare a variable x: B if B : Set or B: Prop). 
Similarly, if a: A, then a is not of type [A, =Al· 

As a matter of fact, a setoid consists of a triple 

[A, =A,eq_rel_proof] ' EA '5et. ER,A->(A-> Prop).( ls_eq_rel AR), 
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where eq_rel_proof is a proof of (ls_eq_rel AR}, stating that =A is an equivalence 
relation over A. If we formalize the type of equivalence relations over a fixed A as 

then, if R : Eq _RelA and a, a1 
: A, one would like to write Raa1

, but this is not a 
proposition. (The R is really a pair consisting of a binary relation and a proof.) 

If we look at the formalization of subsets as subsetoids, we encounter a similar 
problem. If [A, =AJIP is a subsetoid of [A, =A], then an 'element' of this subsetoid 
is given by a pair (a,p), where a : A and p: Pa, but this is not an 'element' of 
[A,=A]- Indeed, if F: A~B and x: [A, =AJIP, we can not write Fx, as x itself is 
not of type A. 

The problem lies in the fact that our terms are very explicit, whereas we would 
like to be more implicit . This situation is also encountered in mathematics, where 
one defines, for example a 'group' as a tuple A= {A,o, inv,e), where A is a set , 
o a binary operation, inv a unary operation and e an element of A, satisfying the 
group axioms. Then one speaks of 'elements of the group A', where one really 
means 'elements of the (carr ier) set A'. So, one (deliberately) mixes up the group 
A and its carrier set A. This is not sloppiness, but convenience: some of the details 
are deliberately omitted, knowing that one can fill them in if necessary. This is 
sometimes called 'informal rigor'. 

As was first noted by Aczel, one would like to have a similar mechanism in type 
theory, for being able to use informal rigor. A way to do this is by creating a level 
on top of the type theory, where one can use more informal language, which is 
then translated to the formal level. This requires that the informal expressions are 
expanded in such a way that they become well-formed in the underlying formal 
type theory. It turns out that in this expansion, the type synthesis algorithm is 
very useful, as it generates the missing in formation . This can be made formally 
precise by introducing the notion of coercion. 

Some of the problematic examples that we gave above can be seen as instances 
of the sub-typing problem. In type theory as we have discussed until now, there 
is no notion of subtype: we can not say that A ~ B, with as intended meaning 
that if a : A then also a : B. It turns out that if one adds such a sub-typing 
relation, the decidability of type checking becomes rather problematic. Moreover, 
there are various ways in which the sub-typing relation can be lifted along the type 
constructions (like n and ~ ). On the other hand, some of the problems discussed 
above can be solved using sub- typing: 

If :EA:Set.A-+(A~ Prop) ~Set , then x : [A,=A] can be declared, 

If Eq _RelA <;; A-+(A~Prop), then R: Eq _RelA, a, a' : A I- Raa' : Prop, 

If [A, =AJIP C:: [A,=AJ, then F ' A->B,a' [A, =AJIP f- Fa ' B. 

Note, however that this does not solve all problems: if a : A, we can not write 
a: [A, =A] (the~ needs to be reversed). Furthermore, the meaning of [A, =A]IP <;; 
[A, =A) is not so clear, as both are not themselves types. 
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A related but different solution can be found by making the inclusions A ~ B 
explicit by a coercion map. Then we have e.g. 

1T 1 EA:Set.A-t(A-tProp) ~Set , 

1T 1 Eq _RelA ~ A-t(A-tProp). 

We have no map from [A, =AJIP to [A, =A], as these are not types. The maps here 
are just definable terms and we can replace the ~ by an -t. But then we are back 
to the original formulations where we have to give all terms explicitly everywhere. 
The idea is to declare the coercions as special maps, to be used by the type checker 
to type expressions. So the user does not have to insert these maps, but the type 
checker will do so to compute a type . Essentially, there are three ways in which a 
type checking algorithm can use a coercion map. 

c:ACSet } 
(or c: A~ Prop) 

the declaration x : A is expanded to x : ( cA). 

G,D } 
c' D <; A-;B 
a:A 

Ga is expanded to cGa of type B. 

} Fa is expanded to F(ca) of type B. 

a:D 

It should also be possible to use multiple coercion maps: if there are coercions 
C1 : A ~ B and C2 : B ~ c) then there is a coercion ,\x:A.c2(c1x) : A ~ c. So 
the coercions are really just definable ,\-terms that can be composed . Of course, 
there should be only one coercion between two types A and B and there should be 
no coercion from a type A to itself. This has to be checked by the system at the 
moment a coercion is declared: it should go through the 'coercion graph 1 to verify 
that it is still a tree. For more on coercions see [Barthe 1996] or [Luo 1999]. Another 
approach to subtypes is to treat them as real subsets: if M : A and A is a subtype 
of B, then M: B (without coercion). We will not discuss this possibility here; for 
a possible set of typing rules for subtypes we refer to [Zwanenburg 1999]. 

2.9. Connection between logic and type theory 

When doing formal proofs with the help of some computer system, one may wonder 
what one is really proving. Or, to put it differently, 

what is the semantics of the formal objects that the system (and the user) 
is dealing with? 
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The systems that we are concerned with here are based on type theory, which moves 
the semantics-question from the level of the computer system to the level of the 
formal system: 

what do the expressions of the type theory mean? 

Note that this only gives a satisfactory answer in case the computer system is a 
faithful implementation of the type theory. The actual situation is as follows: the 
interactive proof development system (where the proof-terms are created) is not 
fully explained in terms of the type theory; however, the proof checker (which is 
executed after the proof-term has been completed) is completely faithful to the type 
theory. 

So, we will confine ourselves to the question what the expressions of the type 
theory mean. This question can be dealt with in different ways . First we can look 
at some (preferred) model, M, of a piece of mathematics and ask what the type 
theoretical expressions mean in M. Second, we can look at some logic l and ask 
what the meaning of the type theoretical expressions in l is. This results in the 
following questions. 

• What is the interpretation of the expressions in the model M and is there a 
soundness and/or completeness result? For A: Prop, 

M f= A iff 3p(f- p, A)? 

• What is the interpretation of the expressions in the logic l and, for A : Prop, 
is A provable in l iff A is inhabited? 

f-c A iff 3p(f- p, A)? 

As type theory is generic, we are mainly interested in the second question. The con
nection with logic is even more relevant as type theory seeks to represent proofs as 
termsi these proof-terms then better have some relation to a proof in logic. Follow
ing the Curry-Howard-de Bruijn propositions-as ·types-embedding, formulas of logic 
are interpreted as types, and at the same time, (natural deduction) derivations are 
interpreted as proof-terms. So, the answer to the question whether proof-terms in 
type theory represent proofs is affirmative: proof-terms represents natural deduc
tion proofs. Of course, the situation is more complicated: there are a lot of logics 
and a lot of type theories. But if we choose, given our logic in natural deduction 
sty le l, an appropriate type theory S(l) , we have the following 

Soundness of the propositions-as-types embedding: 

rl' <p => r f-src1 (E) '<p, 

where~ denotes the deduction of i.p in[. and [E) its encoding as a term in 5(£). r 
is a context in which the relevant variables are declared. In Section 3.2, we describe 
the propositions-as-types embedding in more detail for higher order predicate logic 
and its corresponding type system. 
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The other way around, we may wonder whether, if r.p is inhabited in S(.C), then 
r.p is derivable in .C (where r.p: Prop). 

Completeness of the propositions-as-types embedding: 

fl-s(.qM:rp :b. 1-.cr.p, 

where r is again a context in which the relevant variables are declared. If we take 
into account that a term M : r.p is intended to represent a natural deduction proof, 
we may strengthen our completeness by requiring an embedding [-J from proof-terms 
to deductions. 

Strong Completeness of the propositions-as-types embedding: 

r 1-s(.c) M : r.p :b 1-~M J r.p. 

Completeness is not in all cases so easy. Consider for example the Martin-LOPs 
type theories, where there is no distinction between 'sets' and 'propositions' - both 
are of type Set. We have already discussed this situation in Section 2.5, where we 
pointed out that in ordinary logic there is a sharp distinction between Prop and 
Set from the very start. It is just the way logic is defined, in stages, where one 
first defines the terms (including the domains), then the formulas and then the 
derivations. That means that for Martin-LOPs type theories, it is not so easy to 
define a mapping back to the logic (in this case first order intuitionistic logic). For 
example, look at the context 

A'5et, a•A, P•A->Set , h•(Pa), Q•(Pa)->Set, f •(P a)->A. 

If we try to interpret this in first order intuitionistic logic, we can view A as a 
domain, a as an element of A, Pas a predicate on A and has the assumption that 
(Pa) holds (h is an assumed proof of (Pa)). But then Q can only be understood 
as a predicate on the set of proofs of (P a) 3 , and / as a map from the proofs of 
(Pa) to the domain A. It will be clear that there are many types X:Set in the type 
theory that have no interpretation, neither as a 'domain' nor as a 'proposition', 
in first order intuitionistic logic. As a consequence, Strong Completeness fails for 
Martin-LOPs type theory. It has been shown - but the proof is really intricate, see 
[Swaen 1989] - that completeness (the weaker variant) holds. However, if we extend 
these type theories to higher order , we obtain either an inconsistent system (if we 
interpret the higher order 3 as a E-type, see [Coquand 1986]), or (if we interpret the 
higher order 3 impredicatively) a system for which completeness fails with respect 
to constructive higher order predicate logic; see [Berardi 1990], [Geuvers 1993). 

Summarizing, we observe the following possible points of view: (1) first order 
predicate logic is incomplete, as it does not allow objects to depend on proofs, 
whereas both are just 'constructions'; (2) the idea of unifying the Prop and the Set 
universe into one (Set) is wrong, as it creates objects depending on proofs, a feature 
alien to ordinary logic. We tend to have the second view, although the situation is 

3A - proof-theoretically - interesting predicate on proofs may be 'to be cut-free' . However, a 
predicate can not distinguish between ,8-equal terms, so this predicate can not be expressed . 
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not so easy, as can be seen from the two examples below, where we apply the idea 
or letting objects depend on proofs. 

With respect to the interpretation of the constructive existential quantifier, there 
are also two possible positions: (I) interpret 3 by the L:-type, which does not 
work well for higher order logic, (but higher-order logic is often considered as non
constructive - because impredicative - anyway); (II ) interpret it in a different way 
(e.g. using a higher order encoding or an inductive encoding) that avoids the pro
jections of proofs to objects. Obviously, position (I) on the existential quantifier 
interpretation goes well with position (1) on the Prop-Set-issue above. Similarly 
(II) goes well with (2) above. 

Concluding this discussion on the precise choice of the type theoretical rules 
to interpret the logic, we note the following. The build up of logic in stages, as 
described before, is very much related to a Platonist view of the world, where 

the objects are just there and logic is a means of deriving true properties 
about these objects . 

So an object is not affected by our reasoning about it. In the constructive view, 

both objects and proofs are constructions and the only objects that exist 
are the ones that can be constructed. 

Then a formula is identified with the set of its proofs and there is a priori no 
problem with constructing an element of one set (say the set nat) out of another 
set (say a formula A). So, if we take the constructive view as a starting point, the 
dependency of objects on proofs is no problem. Note that this still leaves a choice 
of really identifying the universe of sets and propositions (then A : Set for sets A 
and A : Set for formulas A} or keeping the distinction (then A : Set for sets A and 
A : Prop for formulas A). In this article we start from type systems where objects 
do not depend on proofs. 

If one chooses a type theory that remains quite closely to the original constructive 
logic (in natural deduction style}, it is not so difficult (although laborious) to prove 
Strong Completeness of the propositions-as-types embedding. See [Geuvers 1993] 
for some detailed proofs and examples. 

Examples of objects depending on proofs 
In the discussion above, we promoted the idea of not letting objects depend on 
proofs. Although this solves some of the completeness questions in a relatively easy 
way, this position is not so simple to be maintained. If one really starts formalizing 
mathematics in type systems, objects depending on proofs occur quite naturally. 

Consider a A : Set that we want to show to be a field. That means that we have 
to define all kinds of objects (0, 1) and functions (mult , .. ) on A and to prove that 
together they satis fy the field-axioms. Now what should the type of the reciprocal 
be, given that the reciprocal of 0 is not defined? An option is to let recip: A->A 
with the property that V'x:A .x :P 0--> multx(recipx) = l. However , this is not very 
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nice: recipO should be undefined (whereas now it is an 'unspecified' element of A). 
In type theory there is a different solu tion to this: construct 

recip' (1:x.A.x f' 0) --; A. 

Then recip is only defined on the subset of elements that are non-zero: it receives 
a pair (a,p) with a : A and p: a -f 0 and returns recip(a ,p) : A. But how should 
one understand the dependency of this object (of type A} on the proof pin terms 
of ordinary mathematics? 

A possible solution is provided by the setoids approach (see also the previous 
Section). We take as the carrier of a field a setoid [A, =A], so A: Set and =A is an 
equivalence relation on A. The operations on the field are now taken to be setoid 
functions, so e.g. mult has to preserve the equality: if a =A a' and b =A b1

, then 
(multab) =A (multa 1b1

). Similarly, all the properties of fields are now denoted using 
the setoid equality =A instead of the general equality = . For the reciprocal, this 
amounts to 

recip' [A, =A]i(>.x.A.x i'A 0)--; [A, =A], 

a setoid function from the subsetoid of non-zeros to [A, =A] itself. In this case, recip 
still takes a pair of an object and a proof {a,p), with a : A and p: a #A 0, and 
returns recip(a,p): A. The difference however is that recip now is a setoid function, 
which implies the following. 

If a,a': A with a =A a',p: a #A 0,q: a' #A 0, then recip(a ,p) =A recip(a',q). 

So, the value of recip (a, p} does not depend on the actual p; the only thing to 
ascertain is that such a term exists {i.e. that a #A 0 is t rue). 

We conjecture that if the objects that depend on proofs only occur in the con
text of setoids, as above, we can make sense of these objects in terms of standard 
mathematics. The general principle that for an object t(p) : A, where p: cp denotes 
a sub-term oft, 

t(p) = t(q) for all p,q • 'P 

is called the principle of Proof Irrelevance. It states that the actual proof p of cp 
is irrelevant for the value of t(p). The setoid equality discussed before obeys this 
principle, due to the way the setoid equality is promoted to subsetoids. 

Another example of objects depending on proofs occurs for example in the defi
nition of the absolute value in an ordered fie ld. Suppose 

p' n x.F.(x 2: 0 v x ~ 0). 

Then define the absolute value function abs as follows. 

"' x abs := >.x:F. case (px) of ( ~nl -} 
(inr _) ,,; 

This function distinguishes cases according to the value of px. If it is of the form 
in l r (with r: x ~ 0), we take x; if it is of the form inrr (with r: x :$. 0), we take 
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-x. Now, for a: F, the term (abs a) contains a proof-term p. We want to prove 
that the values of abs do not depend on the actual value of p. In the context of 
setoids, this means that if we have two definitions of the absolute value function 1 

absp and absq, one defined using the proof p : ITx:F.x ~ 0 V x ::; 0 and one using 
the proof q of the same type, we have to prove 

llx,x':F.(x =p x') --t (abspx) =p (absqx'). 

Note that it may be the case that for some x, the value of px is inl_, while the 
value of q x is inr -· Then abspx has value x and absqx has value -x. One then has 
to prove that in this overlapping case x =p -x, which holds, as it only occurs if 
x =pO. 

3 . Type system s for proof ch ecking 

As we see it, there is not one 'right' type system. The widely used theorem provers 
that are based on type theory all have inductive types. But then still there are 
other important parameters: the choice of allowed quantification and the choice 
of reduction relations to be used in the type conversion rule. We have already 
mentioned the possibility of allowing impredicative quantification or not. Also, we 
mentioned the /3, &, i and 7J rules as possible reduction rules. A very powerful 
extension of the reduction relation is obtained by adding a fixed-point-operator 
Y:IIA:Set.(A--tA}--tA satisfying 

Y /-->y /(Y /). 

With this addition the reduction of the type system does not satisfy strong nor
malization and proof-objects are potential ones. It has been shown in [Geuvers1 

Poll and Zwanenburg 1999] that under mild conditions the Y-rules are conservative 
over the ones without a Y. A similar extension of type theory with fixed points is 
discussed in [Audebaud 1991], where the fixed points are used to define recursive 
data types . 

It is outside the scope of this article to discuss the technical details of various 
different type systems. However, we do want to give some of the underlying theory, 
to show the sound theoretical base of type theoretical theorem provers and to make 
concrete some of the issues that were discussed in the previous Sections. Therefore 
we start off by considering one specific type system in detail. We define a type 
theory for higher order predicate logic, .\HOL and show how mathematical notions 
can be interpreted in it. To make the latter precise, we first look into higher order 
predicate logic itself. Then we study the formal interpretation from higher order 
predicate logic into .\HOL, both as a motivation for the definition of ,\ HOL and as 
an illustration of how precisely mathematics is dealt with in type theory. Then we 
define a more general class of type systems. We discuss the essential properties and 
how type systems are used to create an interactive theorem prover. For ,\HOL itself 
we give- in detail- the type checking algorithm. which is at the core of every type 
theoretical theorem prover. 
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By examples, we give some possible extensions of AHOL with other type construc
tions, like inductive types. The type systems that we discuss here all adhere to the 
principle that objects do not depend on proofs and that there is a distinction be
tween sets and formulas. This is mainly done to keep the 'logical' explanation clear; 
see also the discussion in Section 2.9. We also give no formal treatment of defini
tions here (the 0-ru le for unfolding definitions etc., see Sect ion 2.8). Definitions are 
very prominent in a theorem prover and we believe that (hence) definitions are an 
important formal notion, but we want to restrict to the main issues here. See [Severi 
and Poll 1994] for the extension of type systems with a formal notion of definition. 

3.1 . Higher or·der vredicate logic 

If we want to do proof checking, we first have to make a choice for a logic. There 
are various possibilities: first order, second order, higher order. It is also possible to 
choose between either classical or intuitionistic logic, or between natural deduction 
and sequent calculus. 

For checking formal proofs in a system based on type theory, it turns out that a 
calculus of intuitionistic natural deduction is the most adequate. Although it is not 
difficult to add classical reasoning, type theory is more tailored towards constructive 
reasoning. Furthermore, typed A-terms are a faithful term representation of natural 
deductions. (In sequent calculus there is much more 'bureaucracy'.) The choice 
between first order, second order or higher order can be made by adapting the rules 
of the type system; we will come to that later. So, to set our logical system we 
choose constructive higher order predicate logic in natural deduction style. 

3.1. DEFINITION. The language of H OL is defined as follows . 
1. The set of domains, D is defined by 

D"=BIOID->D, 

where B represents a basic domain (we assume that there are countably many 
basic domains) and n represents the domain of propositions. 

2. For every aED, the set of terms of type a, Tennu is inductively defined as 
follows. (As usual we write t: a to denote that t is a term of type a .) 

(a) the constants cf, c2, .. are in Termu, 
(b) the variables xf, x2,. are in Termu, 
(c) if i.p: 11 and x" is a variable, then ('r/x" .lfJ) : 11, 

(d) ;r <p' n and 1/! ' n, then (<p => 1/!) ' n, 
(e) if M: a-n· and N: a, then (MN): T, 

(f) if M : T and x" is a variable, then (Ax" .M) : a-?T . 

3. The set of terms of HOL, Term, is defined by Term := UueoTermu. 
4. T he set of formulas of HOL, form, is defined by form := Termn . 



1182 HENK BARENDREGT AND HERMAN GEUVERS 

We adapt the well-known notions of free and bound variable, substitution, {3-
reduction and ,B-conversion to the terms of this system. 

There are no 'product' domains (D x D) in our logic. We present functions of 
higher arity by Currying: a binary function on D is represented as a term in the 
domain D-t(D-tD) . A predicate is represented as a function to 0, following the 
idea (probably due to Church; it appears in [Church 1940]) that a predicate can 
be seen as a function that takes a value as input and returns a formula. So, a 
binary relation over D is represented as a term in the domain D-).(D-tO). (If 
R: D-t(D-tO) and t,q: D, then ((Rt)q) : 0.) The logical connectives are just 
implication and universal quantification. Due to the fact that we have higher order 
universal quantification, we can express all other quantifiers using just => and 'r/. 
See 3.6 for more details . 

3 .2. NOTE. We fix the following notational conventions. 
• Outside brackets are omitted. 
• In the domains we omit the brackets by letting them associate to the right , so 

D-;D-;0 denotes D-;(D-;0). 
• In terms we omit brackets by associating them to the left , so Rtq denotes (Rt)q. 

Note that in ordinary mathematics, this is usually written as R(t>q). 
• If we write Rab, we always mean ((Ra) b) , so R applied to a, and then this 

applied to b. If we want to introduce a name (as an abbreviation), we will use 
the sans serif font , e.g. in writing trans as an abbreviation of the transitivity 
property. 

3.3. EXAMPLE. Before giving the logical rules of HOL, we treat some examples of 
terms and formulas that can be written down in this language. Let the fo llowing be 
given: domains IN and A , the relation-constant>: IN-7IN-7S1, the relation-variables 
R , Q: A-7A-?S1 and the function-constants 0: IN and S: IN-7IN. 

1. The predicate 'being larger than O' is expressed by the term >.xlN .x > 0 : IN-7S1. 
2. Induction over IN can be expressed by the (second order) formula ind defined 

as 
yprN 4 n_(PO) => ('tx""-(Px => P(Sx))) => '>'x"' .Px. 

3. The formula trans(R) , defined as 'rlxAyAzA(Rxy => Ryz => Rxz) denotes 
the fact that R is transitive. So, t rans : (A-?A-70)-70. Note that we write 
'r/xAyA zA as a shorthand for 'r/xA .'r/yA .'r/zA. 

4. The term<;;' (A-;A-;0)-;(A-;A-;0)-;0 is defined by 

R <;; Q '~ 'txAyA .(Rxy => Qxy). 

(We informally use the infix notation R <; Q to denote <;RQ.) 
5. The term >.xAyA _('tQA 4 A4 n_(trans(Q) => (R <;; Q) => Qxy)) is of type 

A-7A-?S1. It denotes the transitive closure of R. We use >.xAyA as a shorthand 
for >.xA .>.yA . 

The derivation rules of HOL are given in a natural deduction style. 
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(axiom) if <PEf 

( => -introduction) 
r u<Pf-1' 

r f-"' => ,µ 

( => -elimination) 
r f-"' r f-"' => ,µ 

r f-,µ 

('t/·introduction) 
rf-"' 

if x" ~ FV(r) r I- 't/xq.rp 

('t/-elimination) 
rr-vxu.r.p 

ift:a 
r f- <P[t/x"] 

(conversion) 
rf-"' 

if <P=p ,µ 
rf- ,µ 

Figure 1: Deduction rules of HOL 

3.4. DEFINITION. The notion of provability , r f- r.p, for r a finite set of formulas 
(terms of type form) and r.p a formula, is defined inductively by the rules in Fig. 1 

3.5. REMARK. The rule (conversion) is an operationalization of the Poincare prin· 
ciple discussed in Section 2.8. The rule says that we don 't want to distinguish 
between fJ·equal propositions. 

3.6. EXAMPLE. A well-known fact about this logic is that the connectives&, V, -1,...., 
and 3 are definable in terms of => and 't/. (This is due to [Russell 1903] .) For 
ip, 1/J : n, define 

<P&.P vx0 .(<P => ,µ => x) => x, 

<PV,P Vx0 .(<P => x) => (,P => x) => x, 

.L Vx0 .x, 

~"' r.p => -1, 

3xu.rp Vz0.(Vx" .('f' => z)) => z. 

It's not difficult to check that the intuitionistic elimination and introduction rules 
for these connectives are sound. 
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Equality between terms of a fixed type a is definable by saying that two terms 
are equal if they share the same properties. This equality is usually called Leibniz 
equality and is defined by 

It is not difficult to see that this equality is reflexive and transitive. It is also 
symmetric: Let Q be a predicate variable over A (so Q : A--tfl). Take AyA .Qy ::} Qt 
for P. The deduction is as follows. (At the left we apply the (V-elim) rule followed 
by the (conv) rule.) 

r r (Qt => Qt) => (Qt' => Qt) 

r r Qt' => Qt 

r ,Qt r Qt 

r r Qt => Qt 

/mpredicativity In the definition of the connectives (Example 3.6) and in the defi
nition of equality, one makes use of impredicativity, that is 

the possibility of constructing a term of a certain domain by abstracting 
over that same domam or over a domain of the same 'order'. 

E.g. in Example 3.6 one constructs the proposition r.p&'ljJ by abstracting (using 
the universal quantifier) over the collection of all propositions. Similarly in the 
definition of Leibniz equality one defines a binary relation on A by abstracting over 
the collection of all predicates on A. Both are domains of second order. (The basic 
domains are of first order.) The fact that this logic is higher order allows us to make 
these impredicative constructions. 

The notion of order was first introduced by Russell (see [Whitehead and Russell 
1910, 1927]) in his ramified type theory, to prevent the paradoxes arising from a 
naive conception of the notion of set. Later it was noted by Ramsey [1925] that 
the simple types suffice to avoid the syntactic paradoxes. The semantic paradoxes 
can be avoided by making a clear distinction between syntax (formal system) and 
semantics (models) . In [Whitehead and Russell 1910, 1927] this distinction was not 
made and the ramification was used to prevent the semantical paradoxes. 

Impredicativity is often seen as 'non-constructive': an impredicative definition 
can not really be understood as a construction, but only as a description of an 
object whose existence we assume on other grounds. For example, the definition of 
Leibniz equality describes a binary relation by quantifying over the collection of all 
predicates. This is not a construction, as that would require that the collection of all 
predicates had already been constructed, before we construct this binary relation. 
Therefore, impredicativity is seen as alien to constructive logic . We will still call our 
logic constructive, as it lacks the double negation law (and hence it is not classical). 
Moreover , the logic enjoys the disjunction property (if I- r.pV'lj.i, then I- cp or 1-1/J) and 
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the existence property (if I- 3x:.4.cp, then I- cp[a/x] for some a : .4) that we know 
from constructive logics. If we charachterize a logic as constructive if it satisfies 
the disjunction and the existence property, then our higher order predicate logic is 
constructive. 

3.2. Higher order typed >.-calculus 

In type theory, one interprets formulas and proofs via the well-known 'propositions
as-types' and 'proofs-as-terms' embedding, originally due to Curry, Howard and de 
Bruijn. (See [Howard 1980, de Bruijn 1970].) Under th is interpretation, a formula is 
viewed as the type of its proofs. It turns out that one can define a typed >.-calculus 
>. HOL that represents HOL in a very precise way. What very precise means will 
not be defined here, but see e.g. [Barendregt 1992] or [Geuvers 1993]. Here, we just 
define the system >. HOL, using the intuitions of HOL. In order to get a better 
understanding we note a few things . 

1. The language of HOL as presented in 3.1 is a typed language already. This 
language will be a part of >. HOL 

2. In >. HOL, formulas like cp => 1" and 't/xA.cp will become types. However, these 
'propositional' types are not the same as the 'set' types like e.g. W. Hence 
there will be two 'universes': Prop, containing the 'propositional' types, and 
Type, containing the 'set' types. Pro p itself is a 'set' type . 

3. The deductions are represented as typed >.-terms. The discharging of hypotheses 
is done by >.-abstraction. The modus ponens ru le is interpreted via application. 

The derivable judgments of >. HOL are of the form 

ff-M,A, 

where r is a context and M and A are terms. A context is of the form 
x 1 :.4 1 , ••. , Xn:An, where Xi, ... , Xn are variables and A 1, ... , An are terms. The 
variables that occur in M and A are given a type in a context. If, in the judgment 
r 1-- M : A, the term A is a 'propositional type' (i.e. r r A : Prop), we view M as 
a proof of A. If the term A is a 'set type' (i.e. r I- A : Type), we view Mas an 
element of the set A . 

3.7 . D EFINIT ION . The typed >.-calculus >. HOL, representing higher order predicate 
logic, is defined as follows. The set of pseudo terms T is defined by 

Here, Vis a set of variables. The set of sorts, Sis {Prop, Type, Type1
} • 

The typing ru les, that select the well-typed terms from the pseudo terms, are 
given in Figure 2. Here, s ranges over the set of sorts S. 

In the rules (var) and (weak) it is always assumed that the newly declared variable 
is fresh, that is, it has not yet been declared in r . The equality in the conversion 
rule (conv) is the .8-equality on the set of pseudo terms T. 
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(axiom) 

(var) 

(weak) 

(II ) 

(.\) 

(app) 

(conv) 
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I- Prop : Type 

ff-ks 

r ,x:A I- x: A 

ff-ks ff-M ,c 

r,x,Af-M,c 

r t-A: s1 f,x,Af-B :s2 

r I- IIx:A .B : S2 

f ,x,Af-M'B ff-Ilx,A.B's 

r f- .\x,A.M ' fkA.B 

r f- M ' Il"'A.B r f- N ' A 

r f- MN ' B[N/x] 

f f-M,A ff-B" 

ff-M,B 

I- Type: Type' 

if (s,, s2)E { (Type, Type), 

(Prop, Prop), 

(Type, Prop)} 

if A=p B 

Figure 2: Typing rules for >. HOL 

We see that there is no distinction between types and terms in the sense that the 
types are formed first and then the terms are formed using the types. A pseudo term 
A is well-typed if there is a context r and a pseudo term B such that r 1- A : B 
or r I- B : A is derivable. The set of well-typed terms of >. HOL is denoted by 
Term(>.HOL). A context f is well-formed if it appears in some derivable statement, 
i. e. if there are some M and A such that f I- M : A is derivable. 

The only type-forming operator in this language is the II , which comes in three 
flavors, depending on the type of the domain (the A in IIx: A.B) and the type of the 
range (the Bin II x:A.B). Intuitively, a II-type should be read as a set of functions. 
If we depict the occurrences of x in B explicitly by writing B(x), the intuition is: 

Ilx,A.B(x)" IT B(a) = {fllfaEA[! aEB(a)]). 
oEA 

So, II x:A .B is the dependent function type of functions taking a term of type A 
as input and delivering a term of type B in which x is replaced by the input. We 
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therefore immediately recover the ordinary function type as a special instance. 

3.8 . REMARK. In case x ~ FV(B}, we write A--tB for IT x:A.B. We call this a 
non-dependent function ty pe. 

As examples we list all instances of the IT-type that can be encountered in ...\HOL. 

3.9. EXAMPLE. 

l. Using the combination (Type,Type), we can form the funct ion type A--tB for 
A, B:Type. This also comprises the types of unary predicates and binary rela
t ions: A--tProp and A--tA--t Prop. Furthermore, it also extends to higher order 
predicate types like (A--tA--t Prop}--t Prop. 
If r I- A : Type and r ,x:A I- B : Type, then x ~ FV (B ) in ...\HOL, so all types 
formed by (Type,Type) are non-dependent function types. 

2. Using (Prop, Prop), we can form the propositional type rp--t'l/J for r.p, 1/J :Prop. This 
is to be read as an implicational formula. 
If r I- r.p : Prop and r , x :r.p I- 1/J : Prop, then x ~ FV (1J.i) in ...\HOL , so all types 
formed by (Prop,Prop) are non-dependent types. 

3. Using (Type ,Prop), we can form the dependent proposit ional type IT x:A.r.p 
for A:Type, r.p :Prop. This is to be read as a universally quantified for
mula. This quantification can also range over higher order domains, like in 
ITP: A--tA--t Prop. r.p. 
If r I- A : Type and r ,x:A I- r.p: Prop, then it can happen that xEFV(rp) in 
,\HOL. 

We do not define formal interpretations from HOL to ...\HOL and back. See e.g. 
[Barendregt 1992] for details. Instead, we motivate the interpretation by some (sug
gestive) examples. Then we discuss the main assets of the interpretation and moti
vate its completeness. 

For a good read ing of t he examples below, we recall the notational conventions 
introduced in 3.2: Rab denotes (( R a) b), so R applied to a and that together 
applied to b. Moreover, application binds strong, so Rab--t Rbc denotes ( Rab )--t ( Rbc) 
and ...\x:Rab.M denotes ...\x:(Rab}.M. As usual, arrow associate to the right, so 
A--tA--t Prop denotes A--t(A--t Prop). 

3.10. EXAM PLE. 

l. IN":Type,O:W, > :IN"--tIN--t Prop I- ...\x:IN .x>O: IN--t Prop. Here we see the use of 
...\-abstraction to define predicates. 

2. lN>Type,OJN,SJN-;JN f- IlP>lN-> Prop.(PO)-> 

(IIx JN.(Px->P(Sx)))-> II X> lN.Px' Prop. 
This is the formula for induction written down in ...\HOL as a term of ty pe Prop. 

3. A: Type, R:A--tA--t Prop I- IT x, y, z :A.Rxy--tRyz--tRxz : Prop. ('lfansitivity of 
R) 

4. A:Type I- >.R,Q:A--tA--tProp. IT x,y:A .Rxy--tQxy: 
(A--tA--tProp)--t(A--tA--tProp)--t Prop. (Inclusion of relations) 
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5. A:Type I- >.x,y:A.ITP:A--tProp.(Px--tPy): A--tA--tProp. 
This is 'Leibniz equality' and is usually denoted by =A, mentioning the domain 
type explicitly. 

6. A:Type,x,y:A f- k(x =A y) . .\P:A->Prop.r(.\"A.Pz->Px)(.\q:Px.q): 
(x =A y)--t(y =Ax). The proof of the fact that Leibniz equality is symmetric. 

Just as in HOL, it is possible to define the ordinary connectives&, V, .l, .., and 
3 in .\HOL. For <p, 'ljJ :Prop, define 

<p&,P 

<pVl/J 

j_ 

~<p 

3"'A.<p 

Ila:Prop.(<.p--t 'ljJ--ta}--to:, 

Ila:Prop.(<p->a)->(1/J->a)->a, 

Ila:Prop.o: , 

<p--t.l, 

Ila:Prop. (Il"'A .(•1>->a))->a. 

To form these propositions (terms of type Prop), the rules (Prop,Prop) (for all the 
arrows) and (Type,Prop) (for all the IT-types) are used. 

The logical rules for these connectives can be derived. For example, for <.p&'l/J, 
we have terms 7Tt : (<p&'!jJ)--t<p and 7r2 : (<p&'ljJ)--t'ljJ (the projections) and a term 
{-, -) : <.p--t'ljJ--t(<p&'ljJ) (the pairing constructor). One can easily verify that if we 
take 

n, ,\p:(<p&,P).w(.\x:<p . .\y:,P.x), 

n2 !.p:(<p&,P) .P,P(!.x:<p.!.y: ,P.y), 

(-, -) >.x:<p . .\y:,P.>.a:Prop . .\h:(<p->1/J->a).hxy, 

then these terms a.re of the right type. Hence the introduction and elimination rules 
for the connective & are definable. They also have the correct reduction behavior , 
corresponding to cut-elimination in the logic: 

7ri{t1,t2) """"* 13 t1, 

7r2{ti.t2) """"* 13 t2. 

Similarly for the other connectives, the introduction and elimination rules can be 
defined. 

Note that on the Type level, it is not possible to define data types , like the product 
type. A product type is equivalent to the conjunction (&), but the construction 
above for & can only be done at the Prop level. 

Propositions-as-types for higher order predicate logic 
The propositions-as-types interpretation from higher order predicate logic HOL 
into .\HOL maps a formula to a type and a. proof (a derivation in natural deduction) 
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of a formula 'P to a term {i.e. a typed A-term) of the type associated with rp: 

where Q-D denotes the interpretation of formulas as types and [- ) denotes the in
terpretation of derivations as A-terms. In a derivation, we use expressions from 
the logical language (e.g. to instantiate the V), which may contain free variables, 
constants and domains (e.g . in J(Ax:A .c)) . In type theory, in order to make sure 
that all terms are well-typed, the basic items (like variables and domains) have 
to be declared explicitly in the context. Also, a derivation will in general contain 
non-discharged assumptions (rp1 , . , 'Pn) that will appear as variable declarations 
(z1 : 'PI, ... , Zn : 'Pn) in the type theoretic context. So the general picture is this. 

where rE is the context that declares all domains, constants and free variables that 
occur in I:. 

As an example we treat the derivation of irreflexivity from anti-symmetry for a 
relation R. The derivation is as follows . (f denotes VxAyA Rxy => Ryx => l.., r' 
denotes r , Rxx.) 

r ' I- 't:/xAyA .Rxy => Ryx => l.. 

f' I- 't:/yA .Rxy => Ryx => l.. 

r ' 1- Rxx => Rxx => l.. f' 1- Rxx 

f' l-Rxx=>l.. f 1 l-Rxx 

r' 1-1.. 

fl-Rxx=>l.. 

f I- 't:/xA .Rxx => l.. 

This derivation is mapped to the typed A-term Ax:A.Aq:(Rxx).zxxqq. This term is 
well-typed in the context A: Type,R: A--tA--t Prop,z: Il x,y:A.(Rxy--tRyx--tl..), 
yielding the following judgment, deri vable in AHOL if we take for r the context r = 
{ k Type, R'A-t A-tPmp, dlx, yA(Rxy-tRyx-t .L) ) . 

r f- ,\,,A,\q,(Rxx).zxxqq , (n ,,A.Rxx-t.L). 

The context rE here consists of A: Type,R: (A--tA--t Prop). 
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Now one may wonder if the type system >. HOL is really faithful to higher order 
predicate logic H O L. Put differently, one can ask the question of completeness: 
given a proposition of HOL such that r cp l- M : ~in >. HOL, is IP derivable in 
H OL? It turns out that this is the case. Even though the number of rules of 
>. HOL is limited (where one rule serves several different purposes, e.g. the (>.)-rule 
allows to form both functions , proofs of an implication and proofs of a universal 
quantification) and there seems to be hardly any distinct ion in treatment between 
the propositions (terms of type Prop) and the sets (terms of type Type), we can 
completely disambiguate the syntax. This is stated by the fo llowing Lemma. 

3. 11 . LEMMA (Disambiguation Lemma). Given a judgment r l- M : A in >. HOL, 
there is a ,\HOL-context ro , rL, rp such that 

J. ro , rL , r,, is a permutation of r, 
2. ro , ri , rp l-M ,A 
3. ro consists only of declarations A: Type, 
4. rL consists only of declarations x: A with ro I- A: Type, 
5. fp consists only of declarations z: IP with fo , rL l-y; : Prop. 

Moreover the following are the case. 

• If r I- A : Type, then fol- A: Type and A =: B1-+ · · · -tBn (n ~ 1) and 
fo 1- Bi: Type for all i. 

• Iffl-M:Awhererl-A: Type, thenro,fLl-M : A . 
• If r 1- Ilx:A.B: Prop where r 1- A: Prop, then x ~ FV(B) (and so ITx:A.B =: 

A-tB, representing a real implication). 

The Disambiguation Lemma really states that >. HOL represents HOL very 
closely. Note that it says- among other things- that proof-terms (terms M with 
M : <p for some <p : Prop) do not occur in object-terms (terms t : A with for some 
A : Type). Using the Lemma, one can define a mapping back from AHOL to H OL 
that constructs a derivation out of a proof-term. Let a 1/J with r 1- 1/J : Prop be 
given. 

1P1 · · IPn 

r1-M, .pe;~ 

tP 

Here the y;1 ... i.p 11 are computed from r, using Lemma 3.11 , in such a way that 
fp = Z1: IPJ , . ,Z11 : IP11 · 

The mapping back from AHOL to H OL proofs the completeness of the 
propositions-as-types interpretation: if r I- M : IP, then IP is derivable in H OL 
from the assumptions listed in r p. 

Type Checking 
An important property of a type system is computability of types, i.e. given r 
and M compute an A for which r I- M : A holds , and if there is no such A , 
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return 'false' . This is usually called the type synthesis problem, TSP or the type 
inference problem. In this Section, a type synthesis algorithm for the system ,\HOL 
is given, which is quite reminiscent for type synthesis algorithms in general. Before 
discussing the details we briefly recapitulate some generalities on type synthesis 
and type checking. See also Sections 2.2, 2.3. 

A problem related to type synthesis is decidability of typing, i.e. given r , M and 
A, decide whether r I- M : A holds. This is usually called the type checking problem, 
TCP. Both problems are very much related, because in the process of type checking, 
one ha.s to solve type synthesis problems a.swell: for example when checking whether 
MN : C, one has to infer a type for N, say A, and a type for M, say D , and then 
to check whether for some B, D =[J Il x:A .B with B[N/x] =[J C. It should be 
clear from this case that type synthesis and type checking are closely entwined. 
(See Section 2.3 for an extended example.) The crucial algorithm to construct is an 
algorithm Type_(-) , that takes a context rand a term M such that 

Typer(M) =o A <> r f- M ' A. 

Hence, one will need an algorithm for /3-equality checking to decide typing. 
There are two important properties that solve the decidability of /J-equality check

ing: Confluence for /3-reduction and Strong Normalization for /3-reduction. (This is 
a well-known fact from rewriting: if a rewriting relation is confluent and strongly 
normalizing, then the induced equality relation is decidable: to determine M =[J N, 
one reduces M and N to normal form and compares these normal forms .) 

3.12. PROPOSITION (Confluence). On the set of pseudo terms T, /3-n~duction is 
confluent i.e. for all M, N 1, N2 ET, if M """"* 13 N 1 and M """"*fJ N 2 , then there exists 
a PET such that N 1 """"* 13 P and N2 """"*13 P. 

Confluence for /3 can be proved by follow ing the well-known proofs for conflu
ence for the untyped >.-calculus. Another important property of >.HOL is Subject 
Reduction. 

3.13. PROPOSITION (Subject Reduction). The set of well-typed terms of a given 
type is closed under reduction. That is, for r a context and M, N, A in T, if 
r f- M 'A and M ->o N, then r f- N 'A. 

See Section 2.6 for a discussion on Subject Reduction and Section 3.3 for a 
list of properties for ,\HQL (among which Subject Reduction). The fo llowing is a 
consequence of confluence on T and Subject Reduction. 

3.14. COROLLARY (Confluence on well-typed terms). On the set of well-typed terms 
of ,\HO L, /3-reduction is confluent. That is, for M well-typed, if M -*fJ N 1 and 
M -* fJ N2 , then there exists a well-typed termP such that N 1 -* fJ P and N2 -*fJ P. 
Moreover, N 1 and N2 are well-typed. 
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3.15. PROPOSITION (Strong Normalization). For any term M well-typed in AHOL, 
there are no infinite {3-reduction paths starting from M . (Put differently: all reduc
tions starting from a well-typed term terminate.) 

The proof of this Proposition is rather involved. See [Barendregt 1992] for refer
ences to proofs. 

The type synthesis algorithm Type_(-) attempts to apply the typing rules in the 
reverse direction. For example, computing Typer(>.x:A.M) is done by computing 
Typer,z:A(M) , and if this yields B, computing Typer(Ilx:A .B) . If this returns a 
sE{ Prop, Type}, then we return ITx:A .B as result of Typer(>.x:A.M). So, we read 
the (A)-rule in the reverse direction . 

There is a potential problem in this way of constructing the Type_(-) algorithm 
by reversing the rules: a conclusion r I- >..x:A.M : C need not have been obtained 
from the (>.)-rule. (It could also be a conclusion of the (weak}-rule or the (conv)
rule. This situation is usually referred to as the 'non-syntax-directedness' of the 
derivation rules . A set of derivation rules is called syntax-directed if, given a context 
r and a term M, at most one rule can have as conclusion r I- M : C (for some 
C). See [Pollack 1995] and [van Benthem Jutting et al. 1994] for more on syntax
directed sets of rules for type systems and their advantages. We will treat the 
(potential} problem of non-syntax-directedness later when we discuss the soundness 
and completeness of the Type_(-) algorithm. 

Another part of the algorithm that needs some special attention is the variable 
case. The result of Typer(x) should be A if x:A occurs in r and 'false' otherwise. 
But, if r is not a well-formed context, we want to return 'false' as well! So we have to 
check the well-formedness of r. A type synthesis algorithm consists of two mutually 
dependent recursive functions: Type_(-), the real type synthesis algorithm, and the 
context checking algorithm Ok(-). The latter takes as input a context and returns 
' true' if and only if the context is well-formed (and 'false' otherwise). 

3.16. DEFINITION. We define the algorithms Ok{-), taking a context and returning 
'true' or 'false' , and Type_(-), taking a context and a term and returning a term 
or 'false', as follows. Here x denotes a variable. 

Ok(<>) 

Ok(f,x•A) 

Typer(x) 

Ty per (Prop) 

Typer(Type) 

Typer(Type') 

Typer(MN) 

'true' (the empty context), 

Typer(A)E{Prop, Type, Type'), 

if Ok(f) and x..4Efthen A else 'false', 

if Ok(r)then Type else 'false', 

if Ok{r}then Type' else 'false', 

'false', 

if Typer(M) = C and Typer(N) = D 

then if C --"*/3 ITx:A .B and A =13 D 
then B[N/x] else 'false' 

else 'false' , 
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Typer(,\xoA.M) = if Typer,..A (M) = B 

Typer(fix•A.B) 

then if Typer(fix•A .B)E{Prop, Type, Type') 

then Ilx:A.B else 'false' 

else 'false', 

if Typer(A) = s1 and Typer,:i::A(B) = s2 

and s 1 ,s2 E{Prop, Type, Type1
} 

then if (s 1 , s2 )E{ (Type, Type), (Prop , Prop), 

1193 

(Type, Prop) } 
then s2 else 'false' 

else 'false ', 

The intuition behind the type synthesis algorithm being clear , we want to prove 
that it is sound and complete. This means proving the following. 

3.17. DEFINITION. The type synthesis algorithm Type_(-) is sound if for all rand 
M, 

Typer(M) =A => r f- M, A. 

The type synthesis algorithm Type_(-) is complete if for all r, M and A, 

r f- M ' A => Typer(M) =p A. 

Note that completeness of Type_(-) implies that if Typer(M) = tfalse', then 
M is not typable in r. The definition of completeness only makes sense if we have 
uniqueness of types: 

If r f- M ' A and r f- M ' B , then A =p B. 

This property holds for AHOL. Without uniqueness of types, we would have to let 
Type_(-) generate a set of possible types, for otherwise it could happen that a valid 
type A for M in r is not computed (up to =n) by Typer(M). 

Besides soundness and completeness, we want to know that Type_(-) terminates 
on all inputs , i.e. it should be a total function. (A sound and complete algorithm 
may still not terminate on some non-typable term.) We will deal with soundness, 
termination and completeness now. 

3.18. PROPOSITION (Soundness of Type_(-)). The type synthesis algorithm and 
the context checking algorithm, Type_(-) and Ok(-), are sound, i.e. ifTyper(M) = 
A, then r I- M : A and if Ok(r) = 'true', then r is well-formed. 

The proof of soundness of Type_(-) and Ok(-) is simultaneously, by induction on 
the number of evaluation-steps required for the algorithm to terminate. (Soundness 
states a property only for those inputs for which the algorithm terminates.) The 
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only interesting case is Typer(M N), where one has to use the Subject Reduction 
property and Confluence. 

The termination of Type_(-) and Ok(-) should also be proved simultaneously, by 
devising a measure that decreases with every recursive call. We define the measure 
m for a context r or a pair of a context r and a term M as follows. 

m(r) := #(symbols in r}, 

m(r,M) := #(symbolsinr,M}. 

Now, m decreases for every recursive call of Type_(-) or Ok(-) , except for the case 
of Typer(Ax:A.M) 1 where m(r, IT x:A.B) may be larger than m(r, ,\x:A.M) (if B 
is longer then M). So, the only problem with termination is in the side-condition of 
the (A)-rule, where we have to verify whether IT x:A.B is a well-typed type. This is 
a situation encountered very generally in type synthesis algorithms for dependent 
type theory. See [Pollack 1995] and [Severi 1998] for some general solutions to this 
problem and a discussion. In the case of ,\HOL, there is a rather easy way out: we 
can replace the side-condition r I- IT x:A.B : s in the (A)-rule by an equivalent but 
simpler one. 

3.19. LEMMA. Let r,x:A be a context and B be a term. Suppose r,x:A I- M: B 
for some M . Then the following holds. 

r I- IT x:A.B : s {:::} if B =: Co-t · · · -tC11 for some nEIN with 

(Cn = Prop V (C11 = z for some zwith (z:Type)Ef )) 

then r ~A : Type 

else if B t Type, T ype1 then r I- A : Prop 

When applying the type synthesis algorithm to a ,\-abstraction, we will replace 
the part' if Typer(flx:A.B}E{Prop, Type, Type'}' by the equivalent condition given 
in the Lemma. 

3.20. DEF' INITION. The new type synthesis algorithm Type_(-) and the context 
checking algorithm Ok(-) are defined by replacing in the case Typer(Ax:A.B) the 
part 
if Typer(Ilx:A.B)E{Prop, Type, Type') by 

B = Co-t · · · -1-C11 for some nEIN with 

(Cn = Prop V (C11 = z for some z with z:TypeEr)) 

then Type,.(A) = Type 

else if B ¥.Type , Type'then Typer(A) = Prop 

Note that the algorithm only verifies th is condition when the premise in the 
Lemma is satisfied. The new condition may look rather complicated, but it is de
cidable and now all the recursive calls are done to inputs with a smallest measure. 
We remark that, this slight variation of the type synthesis algorithm is still sound. 
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To establish termination, we have to verify that all side conditions are decidable. 
Here the only work is in the application case: in computing Typer(M N), we have 
to check a ,B-equality and we have to check whether a term reduces to a II-type. 
In general, checking ,B-equality on pseudo terms is not decidable because we have 
the full expressive power of the untyped A-calculus. However , due to the soundness 
of the algorithm (Proposition 3.18L we know that the intermediate results in the 
computation of Typer(M N), C and D , are typable terms. Now, ,B-equality is de
cidable for typable terms, due to Strong Normalization and Confluence. Hence all 
side conditions are decidable. To make the algorithm fully deterministic we search 
the IT x:A .B (in C -"'p II x:A.B) by computing the weak-head-normal-form (which 
ex ists, due to Strong Normalization). 

3.21. PROPOSITIO N. The algorithms Type_(-) and Ok(-) terminate on all inputs. 

Now we come to the completeness of the a1gorithms. Usually this is proved by 
defining a different set of derivation rules (1) that is equivalent to the original one 
(i.e. they have the same set of derivable statements r I- M : A), (2) for which the 
completeness of the algorithm are easy to prove. In order to achieve (2), we define 
a derivation system that is close to the type synthesis algorithm. 

3.22. D EFIN ITION. The modified derivation rules of AHOL are to derive two forms 
of judgment: r 1-tc M : A and r 1-tc ok. T hey are given by the original rules of 
AHOL, except that 

• The rules (ax), (weak), (var) and (conv) are removed , 
• The following rules are added. 

(empty) () f-" ok 

(proj) 
r 1-tc ok 

r1--tc x: A 

(soct) 
r 1--tc Prop : Type r 1--tc Type: Type' 

(context) 
r 1--tc A: s 

r ,x:A 1--tc ok 

• The (app) rule is replaced by 

(app) 
r 1-tc M : C r 1--tc N : D 

r f-" MN' B[N/x] 
if C -"'p ITx:A.B and D =f3 A 

We state the following properties for the modified derivation rules . 
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3.23. PROPOSITION. 1. Soundness of the modified rules 

r 1--tc M : A => r 1-- M : A 

2. Completeness of the modified rules 

f f- M ' A,,. 3Ao[Ao = p A & ff- M' Ao] 

3. Completeness of the modified rules w.r.t Type_(-) and Ok(-) 

r f-" M' A ,,. Typer(M) = p A, 

r 1--tc ok => Ok(r) ='true'. 

All cases in the proof of this Proposition are by an easy induction. 

S.S. Pure Type Systems 

The system >. HOL is just an instance of a general class of typed >. calculi, the so
called 'Pure Type Systems' or PTSs. These were first introduced by Berardi [1988] 
and Terlouw [1989], under different names and with slightly different definitions , 
as a generalization of the so called >.-cube, see [Barendregt 1992]. The reason for 
defining the class of PTSs is that many known systems are (or better: can be seen 
as) PTSs. This makes it fruitful to study the general properties of PTSs in order 
to obtain many specific resul ts for specific systems as immediate instances. In what 
fo llows we will mention a number of these properties. Another advantage is that 
the PTSs can be used as a framework for comparing type systems and for defining 
translations between them. 

Pure Type Systems are an immediate generalization of >. HOL if we just note the 
following parameters in the definition of >. HOL. 

• The set of 'sorts' Scan be varied. (In >. HOL: Prop, Type, Type'.) 
• The relation between the sorts can be varied. (In .\HOL: { Type : Type', Prop: 

Type) .) 
• The combinations of sorts for which we allow the construction of Il-types can 

be varied. (In ,\HQL (Type, Type), (Prop, Prop), (Type, Prop).) 

3.24. DEF INITION. For S a set (the set of sorts), A C S x S (the set of ax
ioms)and R C S x S x S (the set of rules) , the Pure Type System .\(S, A , R) 
is the typed >.-calculus with the deduction rules given in Figure 3. If s2 = s3 in 
a triple (s 1 , s2 , s3 )E'R, we write (s 1 , s2 }E'R. In the derivation rules, the expressions 
are taken from the set of pseudo terms T defined by 

T "=SI VI (IIV,T.T) I (\VT.T) ITT. 

The pseudo term A is well-typed if there is a context r and a pseudo term B such 
that r I- A : B or r I- B : A is derivable. The set of well-typed terms of >.(S , A , R) 
is denoted by Term(\(S, A, R)). 
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(var) 

(weak) 
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(conv) 
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l--s1:s2 

rrks 
r , x:A I- x: A 

r r A" rrM ,c 
r , x,A r M' C 

r 1- A: s1 r , x:A 1- B: s2 

r I- Il x:A .B : s3 

r, xoA r M , B r r nx,A.B , s 

r r >.x,A.M ' n x,A.B 

r r M , n x,A.B r r N , A 

[ rMN ,B[N/x] 

rrM'A rrB" 
frM'B 

Figure 3: Typing rules for PTS 

if (s 1,s2)EA 

if x I" r 

if x I" r 

A =p B 
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It is instructive to define some PTSs to see how flexible the notion is. In the 
following, we describe a PTS by just listing the sort, the axioms and the rules in a 
box. For >.HOL this amounts to the following. 

\ HOL 
S Prop, Type, Type' 

A Prop : Type, Type : Type' 

R (Prop, Prop), (Type, Type), (Type, Prop) 

To define first order predicate logic as a PTS , we have to make a syntactical 
distinction between 'first order domains' (over which one can quantify) and 'higher 
order domains' (over which quantification is not allowed). Therefore, a sort Set is 
introduced, the sort of first order domains, and associated with that a sort Type"' , 
the type of Set. The Pure Type System >.PRED, representing first order predicate 
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logic, is defined as follows. 

APRED 

S Set, Types, Prop, Type 

A Set: Types, Prop: Type 

R (Set, Set), (Set , Type), (Prop, Prop), (Set, Pmp) 

We briefly explain the rules . The rule (P rop , Prop) is the usual for forming the 
implication. With (Set , Type) one can form A--tProp: Type and A--tA--t Prop: Type, 
the domains of unary predicates and binary relations. The rule (Set, Prop) allows 
the quantification over Set-types: one can form IIx:A.ip (A : Set and ip : Prop, 
which is to be read as a universal quantification). Using (Set, Set) one can define 
function types like the type of binary functions: A--+A--+A, but also (A--tA}--tA, 
which is usually referred to as a 'higher order function type'. So note that >.PRED 
is first order only in the logical sense, i.e. quantification over predicate domains 
(like A--tA--tProp) is not allowed. 

The system ).PRED, as described above, captures quite a lot of first order pred
icate logic. As a matter of fact it precisely captures minimal first order predicate 
logic with higher order functions. The minimality means that there are only two 
connectives: implication and first order universal quantification. As we are in a first 
order framework, the other connectives can not be defined. This makes the express
ibility rather low , as one can not write down negative formulas. On the other hand, 
we do have higher order function types. It is possible to define a PTS that cap
tures minimal first order predicate logic exactly (i.e. >.PRED without higher order 
functions). See [Barendregt 1992] for details. 

To regain all connectives, >.PRED can be extended to the second order or higher 
order predicate logic (where all connectives are definable). We only treat the exten
sion to higher order predicate logic (>.PREDw) here and compare it with >. HOL 

-'PREDw 

S Set, Types, Prop, Type 
A Set: Type8

, Prop : Type 

R (Set, Set), (Set , Type), (Type, Type), (Prop, Prop), 

(Set, Pmp), (Type, Pmp) 

The rule (Type, Prop) allows quantification over domains of type Type, which are 
A--t Prop, A--tA--tProp etcetera. The addition of (Type, Type) implies that now also 
(A--t Prop)--t Prop : Type and ((A--t Prop)--t Prop)--t Prop : Type. Quantification is 
over Type, which covers all higher order domains . 

Other well-known typed A-calculi that can be described as a PTS are simple typed 
>.-calculus, polymorphic typed A-calculus (also known as system F, [Girard 1972], 
[Girard, Lafont and Taylor 1989]), higher order typed >.-calculus (also known as 
Fw, [Girard 1972]) . All these systems can be seen as subsystems of the Calculus of 
Constructions, [Coquand 1985], [Coquand and Huet 1988] . We define the Calculus 
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of Constructions (CC) as the following PTS. 

cc 
s *,o 
A *: o 
n (•,'),(.,0),(0,.),(0,0) 
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The aforementioned subsystems can be obtained from this specification by restrict
ing the set of rules R.. This decomposition of the Calculus of Constructions is 
also known as the cube of typed A-calculi, see [Barendregt 1992] for further details. 
In view of higher order predicate logic, one can understand CC as the system ob
tained by smashing the sorts Prop and Set into one, *· Hence, higher order predicate 
logic can be done inside the Calculus of Constructions. We describe the map from 
APREDw to CC later in this Section in detail. 

3.4. Proverties of Pure TyJJe Systems 

As has already been mentioned, an important motivation for the definition of the 
general framework of Pure Type Systems is the fact that many important properties 
can be proved for all PTSs at once. Here, we list the most important properties 
and discuss them briefly. Proofs can be found in [Geuvers and Nederhof 1991] and 
[Barendregt 1992]. In the following, unless explicitly stated otherwise, I- refers to 
derivability in an arbitrary PTS. As in AHOL , we define a context r to be well
fonned if f I- M: A for some Mand A. 

Two basic properties are Thinning, saying that typing judgments remain valid in 
an extended context, and Substitution, saying that typing judgments remain valid 
if we substitute well-typed terms. 

3.25 . PROPOS ITION (Thinning). For r a context, r' a well-formed context and M 
and A in T, if f I- M: A and r ~ f', then f' I- M: A. Here, r ~ r' denotes that 
all declarations that occur in r, also occur in f'. 

3 .26 . PROPOSITION (Substitution). Forf 1 ,x:B,f2 a context, and M, N and A in 
T, if r ,,,,B,f2 f- M, A and f 1 f- N, B, then f 1 , f 2 [N/xj f- M[N/xj , A[N/xj. 
Here , M[N /x] denotes the substitution of N for x in M, which is stmightforwanlly 
extended to contexts by substituting in all types in the declarations. 

Two other properties we want to mention here are Strengthening, saying that 
variables that do not appear in the terms can be omitted from the context, and 
Subject Reduction, saying that ty ping is closed under reduction. 

3.27. PROPOSITION (Strengthening). For f 1, x:B, f 2 a context, and M, A in T, 
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This property, though intuitively very plausible, is difficult to prove and requires a 
deep analysis of the typing judgment (see [van Benthem Jutting 1993]). (Note that 
Strengthening is not an immediate consequence of Substitution, because types may 
not be inhabi ted, i.e. there may not be an N such that r 1 I- N : B.) 

3.28. PROPOSITION (Subject Reduction). For r a context and M, N and A in T, 
if r f- M' A and M -->o N, then r f- N' A. 

There are also many (interesting) properties that hold for specific PTSs or specific 
classes of PTSs. We mention some of these properties, but first we introduce a new 
notion. 

3.29 . DEFINITIO N. A PTS A(S, A , R) is functional, also called singly sorted, if the 
relations A and R are funct ions, i.e. if the following two properties hold 

\fsi,82 1 8;ES(81,82),(81,8;)EA * 82:::::: 8;, 

\fs1,82,83,8~ES(81,s2,83),(81,82,8~)ER * 83:::::: 83 

All the PTSs that we have encountered so far are functional. In general it is hard 
to find a 'natural' PTS that is not functional. F\tnctional PTSs share the following 
nice property. 

3.30. PROPOSITION (Uniqueness of Types). This property holds for funct ional 
PTSs only. For r a context, M, A and B in T, if r 1- M : A and r 1- M: B, then 
A=o B . 

One can sometimes relate results of two different systems by defining an embed
ding between them. There is one very simple class of embeddings between PTSs. 

3.31. DmNITION. For T = ,\(S,A, R) and T' = ,\(S',A', R') PTSs, a PTS
morphism from T to T' is a mapping f : S --t S' that preserves the axioms and rules. 
That is, for all s 1 ,s2ES, if (s 1 ,s2)E A then (f(s1),f{s2))EA' and if (8 1,82,s3)ER 
then (/(s 1), / (s2 ), /(s3 ))ER'. 

A PTS-morphism f from A(S,A,R) to A(S' , A',R') extends immediately to a 
mapping f on pseudo terms and contexts. Moreover, this mapping preserves re
duction in a faithful way: M --tp N iff f (M) --tp f(N). We have the following 
property. 

3.32. PROPOSITION. For T and T 1 PTSs and f a PTS-morphism from T to T 1
, if 

r f- M' A in T, then / (r ) f- J(M) '/( A) in T'. 

Not all PTSs are Strongly Normalizing. We have the following well-known theo
rem. 

3.33. THEOREM. The Calculus of Constructions, CC, is Strongly Normalizing. 
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The proof is rather involved and can be found in [Geuvers and Nederhof 1991 , Co
quand and Gallier 1990, Berardi 1990]. More general approaches to proving strong 
normalization for type systems with dependent types can be found in [Mellies and 
Werner 1998, Geuvers 1995]. 

As a consequence we find that many other PTSs are Strongly Normalizing as 
well. This comprises all the sub-systems of CC and also all systems T for which 
there is a PTS-morphism from T to CC. (Note that a PTS-morphism preserves 
infinite reduction paths.) 

3.34. COROLLARY. The following PTSs are all Strongly Normalizing. All subsys
tems of CC; ,\PRED; ,\PREDw. 

A well-known example of a PTS that is not Strongly Normalizing is .h. This 
generalizes the Calculus of Constructions to the extent where * and 0 are unified, 
or put differently, the sort of types, *• is itself a type. 

,\• 

This PTS is also inconsistent in the sense that all types are inhabited (which means, 
if we view- following the propositions-as-types embedding- the type system as a 
logic, that all propositions are provable). The original proof of inconsistency of A* 
is in [Girard 1972]; a very clear exposition can be found in [Coquand 1986], while 
[Hurkens 1995] has improved and shortened the inconsistency proof considerably. 
From the inconsistency it easily follows that the system is not normalizing. The 
PTS ,\* is also the terminal object in the category of PTSs with PTS-morphisms 
as arrows. 

As a matter of fact , we now have two formalizations of higher order predicate 
logic as a PTS: ,\HOL and .\PREDw. We employ the notion of PTS-morphism to see 
that they are equivalent. l,From APREDw to .\HOL, consider the PTS-morphism f 
given by 

/(Prop) Prop, 

/(Set) Type, 

/(Type) Type, 

/(Type') Type'. 

One verifies immediately that f preserves A and R, hence we have 

r f-,PREo" M 'A=> /(r) f-,"o' f(M) 'f(A). 

The inverse off can almost be described as a PTS-morphism, but not quite. Define 
the PTS-morphism g from APREDw to .\HOL as follows . 

g(Prop) = P'°p, 
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g(Type) = Set, 

g(Type') = Type' 

(In ,\HOL the sort Type' can not appear in a context nor in a term on the left side 
of the':'.) We extend g to derivable judgments of ,\HOL in the fo llowing way. 

g(rl-M:A} g(r) I- g(M} : g(A}, if A " Type, 

g(r I- M: Type) = g(r) I- g(M): Set, if M = · ·-ta, (a a variable}, 

g(r I- M : Type) = g(r) I- g(M) : Type, if M = ... -tPmp. 

By easy induction one proves that g preserves derivations. Furthermore, /(g(r 1-
M : A)) = r I- M : A and g(f(r I- M : A}} = r I- M : A. Hence, >.PREDw and 
AHOL are equivalent systems. This equivalence implies that the system AHOL is 
Strongly Normalizing as well . 

3.5. Extensions of Pure Type Systems 

Several features are not present in PTSs. For example, it is possible to define data 
types (in a polymorphic sort, e.g. Prop in >. HOL or * in CC), but one does not 
get induction over these data types for free. (It is possible to define functions by 
recursion, but induction has to be assumed as an axiom.) Therefore, ' inductive 
types' an extra feature. The way we present them below, they were first defined in 
[Coquand and Paulin-Mohring 1990]. (See also [Paulin-Mohring 1994].) Inductive 
types are present in all widely used type-theoretic theorem provers, like [COQ 1999, 
LEGO 1998, Agda 2000]. 

Another feature that we will discuss is the notion of product and (strong) r:-type. 
A r:-type is a 'dependent product type' and therefore a generalisation of product 
type in the same way that a IT-type is a generalisation of arrow type: r:x:A.B 
represents the type of pairs (a, b} with a : A and b : B[a/x). (If x ~ FV(B), we 
just end up with A x B.) Besides a pairing construction to create elements of a 
r:-type, we have projections to take a pair apart: if t : r:x:A.B, then 7r 1t: A and 
7r2 t: B[7r1t/x]. r:-types are very natural for doing abstraction over theories, as was 
first explained in [Luo 1989]. Products can be defined inside the system if one has 
polymorphism, but r:-types cannot. 

3. 6. Products and Sums 

We have already seen how to define conjunction and disjunction in ,\HOL. These 
are very close to product-types and sum-types. In Figure 4 the desired rules for a 
product-type are given. In presence of polymorphism, these constructions are all 
definable. For example in AHOL we have products in the sort Prop. Let A 1 > A2 : Prop 
and define 
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(products) 

(projection) 

(pairing) 

computation rule: 

r 1- A, : s r 1- A2 : s 

f l-A 1 x A2 : s 

r I- p: A1 x A2 

f 1- rrip: Ai 

r1- t,: A1 r1- t2: A2 

ff- (t 1 ,t2 ): A, x A2 

Figure 4: Rules for product types 

~, .\p:(A1 x A2).pA 1 (.\x:A 1 . .\y:A2 .x), 

~, .\p:(A 1 x A,).pA,(.\x:A1 . .\y:A,.y), 

(-, -) .\x:A1 • .\y:A2 • .\a:Prop . .\h:(A 1 ->A,-ta).hxy, 
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For sum-types one would like to have the rules of Figure 5. This can also be 

(sums) 

(injection) 

(case) 

r 1- A i : s r r- Az : s 

r I- A1 + A2: s 

ff- p: A, 

ff- Ji : A, ->C ff- h : A,_,c 

ff- case(/1 , j,) : (A 1 + A2 )->C 

computation rule: case(/,, h)(;n; p) __, f;p 

Figure 5: Rules for sum types 

defined in a polymorphic sort (inspired by the V-construction). Let in ,\HOL, A 1 , A2 

and C be of type Prop, Ii : A 1 --tC and h : Ar-~C. 

11a:P,op.(A1 ->a)->(A2->a)->a, 

.\p:A1 . .\a: P,op . .\h1 :(A1 ->a) . .\h2:(A2 ->a).h1p, 

Ap:A2 .>.o:Prop. ,\h1 :(A1 -ta) . .\h2 :(A2--ta).h2p, 
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3. 7. E-types 

In mathematics one wants to be able to reason about abstract notions, like the 
theory of groups. Therefore, in the formalization of mathematics in type theory, we 
have to be able to form something like the 'type of groups'. As an example, let us 
see what a group looks like in AHOL. Given A : Type, a group over A is a tuple 
consisting of the terms 

A-+A-+A 

A 

inv A--tA 

(the group-structure) such that the following types are inhabited (we use infix
notation for readability). 

II x, y, z:A.(x o y) oz 

II x:A.e ox 

Ilx:A.( inv x) ox 

xo(yoz), 

x, 

e. 

For the type of the group-structure we can use the product: the type of group
structures over A, Gmup-Stc(A), is (A-+A-+A) x (Ax (A-+A)). If t ' Gcoup-Stc(A), 
then n1 t: A--tA--tA, n 1 (n2 t): A, etcetera. However, this does not yet capture the 
axioms of group-theory. For this we can use the E-type: the type of groups over A, 
Gcoup(A), is defined by 

Gmup(A) '= E o ,A-+A-+A.EeAEinv,A-+A . (Ilx,y, Z'A.(x o y) oz= x o (yo z))ll 
(IIx:A.e ox= x)!\ 
(llx,A.( inv x) ox = e) . 

Now, if t Group(A), we can extract the elements of the group structure 
by projections as before: n 1t A--tA--tA, n 1(n2t) A, etcetera. One can 
also extract proof-terms for the group-axioms by projection: ni(n2 (n2 (n2 t))) 
IIx,y,z:A.n1t(n1txy)z = n 1tx(n1tyz), representing the associativity of the oper
ation n 1t. 

Similarly, if/: A--tA--tA, a: A and h: A--tA with p1 ,P2,PJ and p4 proof-terms 
of the associated group-axioms, then 

(/,(a, (h, (p1 , (p,, (p3 ,p4 )))))) 'Gmup(A) . 

The precise ru les of the E-types in AHOL are as in Figure 6. 
These rules allow the formation of the 'dependent tuples' we need for formalizing 

notions like Group and Ring. An even more general approach towards the theory 
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(E) 

((-,-)) 

computation ru les: 

r f- A: Type r,x:A f- ip: Prop 

ff- i:;,,A.<p' Type 

ff- a, A ff- p, <p[a/x] ff- Ex,A.<p, Type 

r f- (a,p) 'Ex,A.<p 

ff- t, Ex,A.<p 

rt- 71"1 t: A 

ff-t, i:;x,A.<p 

r f- n,t' <p[n1 t/x] 

7r1{a,p}---+ a 
n2 (a,p)-+ p 

Figure 6: Rules for E-types 

of groups would be to also abstract over the carrier type, obtaining 

Group := EA:Type.E o :A---+A---+A.Ee:A.Einv:A---+A. 
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(Tix, y, zA(x o y) oz = x o (yo z))ll 

(ITx:A.e ox= x)I\ 

(nx,A.Onv x) ox= e). 

This can be done by an easy extension of the rules, allowing to form Ex:A.B also 
for A: Type': 

(E') ff- A ' Type' r, x,A f- B , Type 

r f- Ex,A.B ' Type 

However, if we want the system to remain consistent, it is not possible to allow 
Ex:Type.B: Type. We must put Ex:Type.B: Type1

• This implies that Group: Type', 
which may not be desirable. 

We may observe that the E-type behaves very much like an existential quantifier. 
Apart from the fact that Ex:A.ip is not a proposition, but a type, we see that a 
(proof)term of type Ex:A .ip is constructed from a term a of type A for which i,c[a/x] 
holds. The other way around, from a (proof)term t of type Ex:A.ip one can construct 
the witness 11"1 t and the proof that for this witness ip holds. This very closely reflects 
the constructive interpretation of the existential quantifier ('if 3x:A.'P is derivable, 
then there exists a term a for which 'P[a/x] is derivable'). The use of E-types for 
the existential quantifier requires that Ex:A.ip: Prop (not of type Type) in ,\HQL. 
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In order to achieve this we could modify the E-rule as follows. 

(E) r f- A: Type r,x:A f- <p: Pcop 

r I- Ex:A.r.p : Prop 

However, the addition of this rule to ..\HOL makes the system inconsistent. In the 
case of ..\PREDw, it is possible to add a E-type that represents the existential quan
tifier, while remaining consistent, but only for A : Set. On the other hand, one may 
wonder whether a E-type is the correct formalization of the constructive existential 
quantifier, because it creates set-terms that depend on proof-terms. For example, 
if we put z : Ex:A.rp in the context where Ex:A.r.p is a proposition (Ex:A.r.p: Prop) , 
then 7r 1z: A (A : Set). So we have an element-expression (7r1 z) that depends on a 
proof (z), a feature alien to ordinary predicate logic , where the expression-language 
is bu ilt up independently of the proofs. 

3.8. Inductive Types 

A basic notion in logic and set theory is induction: when a set is defined inductively, 
we understand it as being 'built up from the bottom' by a set of basic constructors. 
Elements of such a set can be decomposed in 'smaller elements' in a well-founded 
manner . This gives us the principles of 'proof by induction' and 'function definition 
by recursion'. 

If we want to add inductive types to our type theory, we have to add a definition 
mechanism that allows us to introduce a new inductive type, by giving the name and 
the constructors of the inductive type. The theory should automatically generate 
a scheme for proof-by-induction and a scheme for primitive recursion. It turns out 
that this can be done very generally in type theory, including very many instances of 
induction. Here we shall use a variant of the inductive types that are present in the 
system COQ [1999] and that were first defined in Coquand and Paulin-Mohring 
[1990]. Another approach to inductive types is to encode them as 'well-ordering 
types', also called W-types. The W-type can be used to encode arbitrary inductive 
types , but only if we are in extensional type theory. As we are in an intensional 
framework, we do not pursue that thread; see e.g. [Goguen and Luo 1993] for details. 

We illustrate the rules for inductive types in ..\ HOL by first treating the (very 
basic) example of natural numbers nat. We would like the user to be able to write 
something like 

Inductive nat : Type := 

0: nat 

I S: nat-?nat . 
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to obtain the followi~g rules. 

r I- h: nat-tA-tA 

r I- Recnat!1h : nat-tA 

ff- P' naHP,op ff- Ji 'PO ff- J, 'Tixonat.Px->P(Sx) 
(elim2 ) 

r I- Recnadih : Ilx: nat.Px 

The rule (elim1) allows the definition of functions by primitive recursion. The rule 
(elim2 ) allows proofs by induction. To make sure that the functions defined by 
(elim1) compute Rec nat has the following reduction rule. 

Recnatf1hO -+i f1 

Recnatf1h(St) -ti ht(Recnad1ht) 

It is understood that the additional t-reduction is also included in the conversion
rule (conv), where we now have 'A = pi B' as a side-condition. The subscript in 
Ree nat will be omitted, when clear from the context. 

An example of the use of (elim i) is in the definition of the 'double' function d, 
which is defined by 

Now, dO -* fJi 0 and d(Sx) -* fJi S(S(dx)). The predicate of 'being even', even(-) , 
can also be defined by using (elimi): 

even(-) := Rec nat(T)(,\x:nat.>.o: :Prop.-.o:). 

We obtain indeed that 

even(O) -*Pi T, 

even(Sx) -*fJi •even(x) 

An example of the use of (elim 2 ) is the proof of Ilx: nat.even (dx). Say that true is 
some canonical inhabitant of type T. Using even(d(Sx)) =fJi ••even(dx) we find 
that >.x:nat.>.h:even(dx).>.z:-.even(dx).zh is of type Ti x:na t.even (dx)-teven(d(Sx)). 
So we conclude that 

I- Rec natt rue (>.x:nat.>.h:even(dx).,\z:•even(dx).zh) : Ilx: nat.even(dx). 

Another well-known example is the type of lists over a domain D. It is defined 
as follows. 

Inductive List : Type := 

Ni l : List 
I Cons : D-tlist-tlist 
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with the following rules. 

(elim,) 
r f- A ' Type r f- Ii 'A r f- h ' D-> List->A->A 

r f- P , List -> Prop r f- Ji ' PNil r f- j, , TidoD .Tixo list.Px->P(Cons dx) 
(elim2) 

r I- Recusd1h: Ilx: List.Px 

The rule (el im 1 ) allows the definition of functions by primitive recursion, while the 
rule (elim2 ) allows proofs by induction. To make sure that the functions compute 
in the correct way, Ree List has the following reduction rule. 

Recusd 1h Nil -4i !1 
Rec usd1/2(Cons dt) -t, hdt(Recusd1ht) 

An example of the use of Ree List is in the definition of the 'map' function that takes 
a function f: D-tD and returns the function (of type List-4 list ) that applies / to 
all elements of the list. Define 

map o= ,\/oD->D.,\lo li st.Rec u .. Nil (,\doD .,\kolist.,\ho list.Cons (f d)h) 

(D->D)-> List-> List . 

Then map !(Cons dt) =o, Cons (/d)map ft. 
Of course, there is a more general pattern behind these two examples. The ex

tension of .\HOL with inductive types is defined by adding the following scheme. 

Ind uctive µ: Type:= 

constr 1 : al (µ)-7 · · a!n
1 
(J.t)-7µ 

I constrn: af(µ)----t · · · a~n (µ)-7µ 

where the aj(µ) are all 'type schemes with a strictly positive occurrence ofµ', i.e. 
each aj(µ) is of the form A1-7 · ·An----tX with no occurrence ofµ in the Ak and 
either X =::µorµ not in X. This declaration ofµ introducesµ as a defined type 
and it generates the constructors constr1 ,. , constr11 plus the associated elimination 
rules and the reduction rules. For a general picture on inductive types we refer to 
[Paul in~Mohring 1994]. 

To illustrate the generality of inductive types, we give an example of an inductive 
type that is more complicated than nat and List. We want to define the type Tree 
of countably branching trees with labels in D. (So a term of type Tree represents a 
tree where the nodes and leaves are labelled with a term of type D and where at 
every node there are countably many subtrees.) The definition of Tree is as follows . 

Inductive Tree: Type:= 

Leaf : D----t Tree 

1 Join : D-7{nat-7 Tree)-7 Tree 
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Here, Leaf creates a tree consisting of just a leaf, labelled by a term of type D. 
The constructor Join takes a label (of type D) and an infinite (countable) list of 
trees to create a new tree. The (elirni) rule is as follows . 

. r f- A' Type r f- Ji' D-->A r f- j,' D-->(nat-->T<ee)-->(nat-->A)-->A 
(ehm 1 ) 

f I- RecTreefih: Tree--+A 

RecTree has the following reduct ion rule. 

RecTree/ih(Leafd) --+. fid 

ReCTree/ih(Joindt) --+. hdt(,\x:nat.ReCTreefih(tx)) 

It is an interesting exercise to define all kinds of standard functions on Tree, like 
the function that takes the nth subtree (if it exists and take Leafa otherwise) or 
the function that decides whether a tree is infinite (or just a single leaf). 

For Tree, we have the following (elim2 } rule. 

r f- P' Tree-> Prop r f- Ji ' Ild,D.P(Leafd) 
(elim2) r f- j, 'Ild,D.nt, nat-->Tree.(nn,nat.P(tn))-->P(Joindt) 

r I- ReCTreefih: ITx:Tree.Px 

Another interesting example of inductive types are inductively defined propo
sitions. An example is the conjunction, which has one constructor (the pairing). 
Given i.p and 1/J of type Prop, it can be defined as follows. 

Inductive i.p /\ 1/J : Prop := 

Pair' <p-->l/J-->(<p /\ 1") 

As we do not have the (Prop, Type) rule in ,\HOL, we can only consider the second 
elimination rule, which will only appear in the case where P is a constant of type 
Prop. (So P: Prop instead of P: i.p /\ 1/J--+Prop.) The elimination rule (elim2 ) rule is 
then as fo llows. 

r f- P' Prop r f- Ji '<p-->l/J-->P 
(elim2 ) 

r f- RecA/i '(<pf\l/J)-->P 

By taking i.p (respectively 1/J) for P and ,\x:i.p.,\y:'l/J.x (respectively ,\x:i.p.,\y:'l/J .y) 
for Ji, one easily recovers the well-known projection from ip /\ 1/J to i.p (respectively 
1/J). The logical operators V and 3 can similarly be defined inductively. 

More general inductive definitions 
Above we have restricted ourselves to a specific class of inductive types. This class 
is very general, covering all the so called 'algebraic types', but it still can be ex
tended. There are three main extensions that we discuss briefly by some motivating 
examples. They are 

1. Parametric Inductive Types 
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2. Inductive Types with Dependent Constructors 

3. Inductive Predicates 

Many of these extensions occur together in more interesting examples. 
Probably the most well-known situation of a 'parametric type' is the type of 'lists 

over a type D'. Here the type Dis just a parameter: primitive recursive operations 
on lists do not depend on the specific choice for D. A possible way for defining the 
type of parametric lists would be the following. 

Inductive List : Type-+ Type := 

N;t ' TID,Type.(ListD) 

I Cons' nD,Type.D-t(ListD)-t(ListD). 

Which would generate the following elimination rules and reduction rule. 

r f- D, Type r f- A , Type r f- / 1 , A r f- /z, D-t(ListD)-tA-tA 
(elirni) 

f I- Recustfih: (ListD)--tA 

r f- D ' Type r f- /, , P(NilD) 

(elirn2) r f- P' (ListD)-t Prop r f- /z 'Ild,D.nx,(ListD).Px-tP(Cons Ddx) 

f I- Rec ustf1h: Ilx:(ListD).Px 

Recust!1h( Ni lD) --+i Ii 
Ree Listl1 h(Cons Ddt) --+. fzdt(Rec List/1 fzt) 

To be able to wr ite down the type of the constructors Nil and Cons, we need the 
rule (Type', Type) in >.HOL, which makes the system inconsistent. Therefore , this 
extension works much better in a system like >.PREDw, where we can consistently 
allow quantification over Set. We will not be concerned with these precise details 
here however. 

In the example of parametric lists we have already seen constructors that have 
a dependent type. It turns out that this situation occurs more often. With respect 
to the general scheme, the extension to include dependent typed constructors is a 
straightforward one: all definitions carry through immediately. We treat an interest
ing example of an inductive type (the ~-type), which is defined using a constructor 
that has a dependent type. Let B : Type and Q : A--tProp and suppose we have 
added the rule (Prop, Type) to our system. 

Inductive µ: Type := 

In' n ,,B.(Qz)-tµ. 
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r f- A' Type r f- Ji 'Il zoB.(Qz)->A 
(elim 1 ) 

r 1- Ree µJi : µ-+A 

r f- P' µ-> Prop r f- Ji 'IlzoB.Il yo(Qz).P( lnzy) 

(elim,) r f- Ree,,/
1 

, Il xoµ.(Px) 

The L-reduction rule is 

Now, taking in (elimt) B for A and Az:B .>..y:(Qz) .z for /i, we find that 

Rec (.\zoB . .\yo(Qz).z)( ln bq)-» b. 

Hence, we define 11"1 := Rec (Az :B.Ay:(Qz).z). Now, taking Ax:µ .Q(n 1x) for 
P in (elim2) and .\zoB . .\yo(Qz).y for Ji, we find that Ree (.\zo B . .\yo(Qz).y) 
Il zoµ .Q(n 1z) . Furthermore, Ree (.\zoB . .\yo(Qz).y)( lnbq) -» q. Hence, we define 
11"2 := Ree (Az: B.Ay:(Qz).y) and we remark that µ together with In (as pairing 
constructor) and n 1 and n2 (as projections) represents the E-type. 

An example of an inductively defined predicate is the equali ty, which can be 
defined as follows. 

Ind uctive Eq: D-tD-tProp := 

Ref! ' IlxoD.( Eqxx). 

J ust like in the example for the conjunction, we only have the second elimination 
rule for the non-dependent case (i.e. P only depends on x, y:D but not on a proof 
of Eqxy). So we have 

r f- P, D-tD-tProp r f- Ji 'IlxoD .(Pxx) 
(elim2) 

r f- ReeEq/1 , Il x,yoD .(Eq xy)->(Pxy) 

The L- reduction rule is 

4. Proof-development in type systems 

In this section we will show how a concrete proof-assistant works. First we show 
in what way the human has to interact with the system. Then a small proof
development is partially shown (most proof-objects are omitted). Finally it is shown 
how computations can be captured in formalized theories. 
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4. J. Tactics 

In Section 2.1 and Section 4.3 examples will be given of an easy, and a more involved 
theorem with full proofs . Even before these examples are given, the reader will 
probably realize that constructing fully formalized proofs (the proof-objects) is rel
atively involved. Therefore tools have been developed- so-called proof-assistants
that make this task more easy. A proof assistant consists of a proof checker and an 
interactive proof-development system. We have depicted the situation graphically 
in Figure 7. In the proof-development system one chooses a context and formu-

tactics 

current context 
current goal 

proof-deve\opment system 

proof assistant 

Figure 7: A proof-assistant and its components 

!ates a statement to be proved relative to that context . This statement is called the 
goal. Rather than constructing the required proof-object directly, one uses so-called 
tactics that give a hint to the machine as to what the proof-object looks like. For 
example, if one wants to prove 

1;1,,A.(Px ,,. Qx) 

in context A : Set, P, Q : A-+ Prop, then there is a tactic ('Intros') that changes 
the context by picking a fresh ('arbitrary') x:A and assumes Px, the goal now be
coming Qx. To be more precise, we give some extracts of Coq sessions. In Coq, 
the II-abstraction and the >.-abstraction are represented by brackets: (x:A)B de
notes II x: A.B and [x:A]M denotes >.x:A.M. Furthermore,-> and abstraction bind 
stronger than application, so we have to put brackets around applications, writing 
(x : A) (P x) - > ( Q x) for IT x:A.Px--+Qx. In the following, Unnamed_thm < and 
Coq < are the Coq prompts at which the user is expected to type some command : 
at Coq <, the system is in 'declaration mode', where the user can extend the con
text with new declarations or definitions; at Unnamed_thm <,the system is in 'proof 
mode', where the user can type in tactics to solve the goal(s) . 
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Coq <Variable A:Set; Variable P,Q:A->Prop. 
A is assumed 
P is assumed 
Q is assumed 

Coq < Goal (x:A) (P x) -> (Q x). 
1 subgoal 

Unnamed_tlun < Intros. 
1 subgoal 

(P x) 

(Q x) 
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The H: (P x) means that we assume that H is a proof of (P x) (in order to 
construct a proof q of (Q x) , thereby providing a proof of (P x) -> (Q x) 1 namely 
(H: (P x)]q, and hence of (x:A) (P x) -> (Q x), namely [x:A] (H: (P x)]q. 

Another tactic is 'Apply'. If the current context contains a: A and p: (x: A) (P x) 
- > (Q x) and the current goa1 is (Q a), then the command Apply p will change 
the current goal into (P a). This is done by matching the type of p with the current 
goal where the universal variables (here just x) are the ones to be instantiated. So, 
the system matches (Q x) with (Q a) , finding the instantiation of a for x. The 
proof-term that t he system constructs is in this case p a ? , with ? t he yet to be 
constructed proof of (P a). 

Coq < Variable a:A; Variable p (x:A) (P x) -> (Q x). 
a is assumed 
p is assumed 

Coq < Goal (Q a). 
1 subgoal 

(Q a) 

Unnamed_ tlun < Apply p. 
1 subgoal 

(P a) 
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Another essential tactic is concerned with inductive types. For example the type 
of natural numbers is defined by 

Inductive nat := 0 :nat I S: nat -> nat. 

This type comes together with an induction principle 
nat_ind 

(P:(nat->Prop))(P 0)->((n:nat)(P n)->(P (S n)))->(n:nat)(P n) 
The way this can be used is as follows. If the (current) goal is (Q n) in con
text contain ing n nat, then the tactic Elim n will produce the new goals (Q O) 
and (n nat)(Q n)-> (Q (n+1)). Indeed, if p is a proof of (Q 0) and q of 
(n :nat) (Q n)-> (Q(n+1) ), then (nat_ind Q p q n) will be a proof of (Q n). 

Also th is type nat comes with a recursor nat...rec satisfying 

(nat...rec a b 0) = a; 

(nat...rec a b (S n)) = (b n (nat...rec a b n)). 

Indeed, going from left to right, these are t-reductions that fall under the Poincare 
principle. 

As logical operators are defined inductively, we basically have all tools to develop 
mathematical proofs. The interactive session continues until all goals are solved. 
Then the system is satisfied and the proved result can be stored under a name that 
is chosen by the user. 
Subtree proved! 

Unnamed_thm < Save fst lemma 
<tactics> 

fst_lemma is defined 
In the place of <tactics>, the system repeats the series of tactics that was typed 
in by the user to solve the goal. The system adds a definition fst.J.emma : = 
to the context, where ... is the proof term (a typed ,\-term) that was interactively 
constructed. Then later the user can use the lemma by referring to fst.J.ernma, for 
example in the Apply tactic: Apply fst.J.ernma. 

The set of tactics and its implemeptation together with the user interface will 
yield a large proof-development system. For example, several techniques of auto
mated deduction may be incorporated as tactics. But even if the resulting proof
development system as subunit in general will be large, the reliability of the proof
assistant as such is still high, provided that the proof checker is small, i.e. satisfies 
the de Bruijn criterion. 

4.2. Examples of Proof Development 

Given a mathematical statement within a certain context, a proof development 
consists of a formalization of the context r and statement A and a construction of 
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a proof-object for it, i.e. a term p such that 

r 1-p, A. 

A substantial part of a proof development consists of a theory development, a name 
coined by Peter Aczel. This consists of a list of primitive and defined notions and 
axioms and provable theorems culminating in the goal A to be proved. In this section 
we will present such a theory development in the system Coq for the statement that 
every natural number greater than one has a prime divisor. 4 

Two aspects of the development are of interest. Whereas the logical operators -t 

and V are primitive notions of type theory (when translated as II), the operators 
conjunction /\, disjunction V, false FF, negation - and existence 3 are also definable 
using inductive types, see [Martin-L6f 1984]. For example 
Inductive or [A:Prop; B:Prop] Prop := 

or _intro! A-> (or A B) 
I or_intror B->(or A B) 

Here, the abstraction [A: Prop; B: Prop] says that A and B are parameters of the 
definition. Some pretty printing, a syntactic definition can be added, allowing to 
write A \/ 8 for (or A 8). The inductive definition implies that A \/ 8 comes 
together with maps 
or_introl (A,B:Prop)A- >A\/B 
or_intror (A , B:Prop)B- >A\/B 
We also need a map corresponding to the elimination principle for disjunction (for 
example to prove that A\/B - > B\/A): 
or _ind (A, 8, P: Prop) (A->P)-> (B->P)->A \/B->P 

It is also possible to define the operations /\, V, FF, - and 3 without inductive 
types, using higher order quantification, as in [Russell 1903). For example disjunc
tion becomes 

A v B = ITC,Prop.(A->C)->(B->C)->A v B->C. 

In this way the elimination principle is the term 

The logical definitions defined this way turn out to be equivalent with the induc
tively defined ones. Following Martin-L6f we use the inductive defini tions, because 
this way one can avoid impredicative notions like higher order quantification. 

4 From this statement Euclid's theorem that there are infinitely many primes is not far removed: 
consider a prime factor of n1 + l and show that it is necessarily > n . Thus one obtains Vn3p > 
n.prime p. A slightly different formalization is possible in type theory, where one can prove the 
statement Vn:INVp1, ... ,pn:IN(prime PI/\ ... /\prime Pn => 3x:IN(pr ime x /\ x f:- PI/\ ... /\ x f:- p,.]]. 
Note that it is impossible to even state this as a theorem in Peano Arithmetic, because of the use 
of n as a parameter denoting the length of the sequence p and the number of disjunct ions x f:- p;. 
In type theory it can be stated because of the rules for inductive types. In arithmetic one would 
have to go to second order logic to state (and prove) this theorem 
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Another point of interest is that inductive types are freely generated by their 
constructors. This has for example as consequence that for the type of natural 
numbers one can prove 

(n natl • ( (S n) = 0 ) 
(n ,m nat) (S n) = (Sm) -> n = m 

Thus we see that within type theory with inductive types, Heyting arithmetic 
can be forma1ized, without assuming additional axioms or rules. To quote Randy 
Pollack: "Type theory with inductive types is intuitionistic: mathematical principles 
are wired in." 

Now we will present a theory development in Coq (version 6.3) , for the statement 
that every natural number has a prime divisor. The mathematics behind this is very 
elementary. Logic is introduced.5 After the introduction of the natural numbers1 

plus and times are defined recursively. Then division and primality are defined. In 
order to prove our result the usual ordering < is defined (first ::;) and course of 
value induction6 is used. Text written between (* *)serves as a comment. In 
the following, the proofs a.Te omitted but the definitions are given explicitly. 

( ••••••••••••• •• • A s i mple proof-development ••••••••••••••••) 

(u o Propositional connectives defined inductively. uu) 

Inductive and [A:Prop; B:Prop] Prop 
::: conj A->B->(and A B) 

Inductive TT Prop 
:: trivial TT. 

Inductive FF Prop 

Definition not Prop->Prop 
[A:Prop)A ->FF. 

Definition iff : " [A ,B: Prop] (and (A->B) (B->A)) . 

(• For pretty printing syntactic definitions (not sho~m ) 

introduced that allow to use the following notations 

-A for (not A) 

A/\B for (and A B) 
A\/B for (or A B) 
A<->B for (iff A B) 

(• Introduction and eliminat i on rules. • ) 

•) 

5in fa.et classical logic. An intuitionistic proof is much better, as it provides an algorithm to 
find the prime divisor. But this requires more work. 

6!f for every nEIN one has ('v'm < n.Pm)-+Pn, then 'v'nEIN.Pn. 
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Lemma and_in (a,b:Prop)a- >b->(and a b). 
Lemma and_ ell (a , b : Prop) (and a b)->a. 
Lemma and_elr (a , b: Prop) (and a b)->b. 

Lemma false_el (a:Prop) FF->a. 

Lemma or _inl (a, b: Prop) a-> (or a b). 
Lemma or_inr (a,b:Prop)b->(or a b). 
Lemma or_el (a,b,c:Prop)(a- >c) - >(b- >c) - >(or a b)->c. 

(• Lemmas combining connectives. • ) 

Lemma non_or (a,b:Prop)-(or a b)->-a/\-b. 
(• We shov the proof-object (generated by the tactics) : 

non_or "' 
[a,b:Prop; p:(not (or a b))] 
(and_in (not a) (not b) [q: a] (p (or_inl a b q)) 

[q:b] (p (or_inr a b q))) 
(a ,b :Prop)(not (or a b))->(and (not a) (not b)) •) 

(• Some lemmas omitted •) 

(•••••••••• ••••••••• Predicate logic. *******************) 

Inductive ex [A Set; P A->Pr op] Prop 
: = ex_intro (x: A) (P x) ->(ex A P). 

(• A syntactic definition (not shovn) is given that allovs one 
to vrite the usual 

(EX x:AI (P x)) for ex A [x:A] (P x) 

Section Pred. 

Variables A Set; P : A->Prop; Q • A ->Prop. 

Lemma all_el (x: A) ( (y: A) (P y) ) - > (P x). 
Lemma ex_in (x:A)(P x) - >{EX y:Al(P y)). 

Lemma non_ex c-cEx x:A l (P x)))->(x:A)-(P x). 
Lemma all_not ((x : A)-(P x))->-(EX x:AI (P x)). 
Lemma all_ and ((x :A) (P x) /\ (Q x) )-> ((x: A) (P x)) /\ ((x: A) (Q x)) . 
Lemma (EX x:AI (P x)\/(Q x)) 
->(EX x : AI (P x))\/(EX x:AI (Q x)). 

End Pred. 

( • Classical logi c . •) 
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Axiom DN (a:Prop)(--a->a). 

Lemma dn_c (a : Prop) --a<->a. 

Lemma (• Excluded middle: tertium non datur. •) 
tnd (a :Prop) (a\;-a) 

(• Some lemmas omitted •) 

Section Pred_clas. 

Variable A:Set; P:A->Prop. 

Lemma non_all (-(x:A) (P x))->(EX x:Al-(P x)). 
Lemma e x_c (EX x :A )(P x))<->-(x:A)-(P x). 

(• This lemma has the folloving proof-object. (Note the presence of DN) 

(conj (EX x:A I (P x))->-((x:A)-(P x)) 
-((x:A)-(P x))->(EX x:A I (P x)) 

[H: (EX x:A I (P x)); HO: ((x:A) (P x)->FF)] 
(ex_ind A [x:A](P x) FF [x:A; H1:(P x))(HO x Hi) H) 

[H: (-((x:A)-(P x)))) 
(DN (EX x:A I (P x)) 

[HO:((EX x:A I (P x))->FF)] 
(H (x:A; Hi : (P x))(HO (ex_intro A [xO:A)(P xO) x Hi))))) 

(EX x:A I (P x))<->-((x:A)-(P x)) •) 

End Pred_clas. 

(••••••••••••••••••• Arithmetic ••••••••••••••••••••••••) 

Inductive eq [A:Set;x:A] A->Prop 
: = refl_equal (eq A x x) . 

(• A syntactic definition (not shovn) is introduced in order to use 
the abbreviation 

x=y for (eqAxy). 
In this syntactic definition, the type A can be used as an 
'implicit argument'. It is reconstructed by the type checking 
algorithm from the type of x •) 

Lemma sym_eq : (A:Set) (x,y:A) (x = y)->(y = x). 
Lemma leib : (A:Set) (P:A->Prop) (x , y:A) (x = y)->(P x)->(P y). 
Lemma eq_ind_r (A:Set; x:A; P:(A->Prop))(P x)->(y:A)(y=x)->(P y). 
Lemma f_equal (A,B:Set; f : (A->B); x , y :A)(x=y) -> ((f x)=(f y)). 

Inductive nat Set : :: 0 : nat I S nat->nat. 



Definition 
Definition 
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: nat : = (S 0) . 
: nat ·= (S one) . 

Definition Is_suc := [n:nat) 
Cases n of 

0 => FF 
I (S p) => TT 

end. 

Lemma no_conf (n:nat)-(0= (Sn)). 

Inductive l eseq [n:nat) nat->Prop 
leseq_n (leseq n n ) 

I leseq_suc (m :nat) (leseq n m)->(leseq n (S m)). 

Definition lthan := [n,m:nat) (leseq (S n) m). 

Lenuna leseq_trans (x , y,z:nat)( l eseq x y)->(leseq y z)->(leseq x z). 
Lemma lthan_leseq (n,m:nat)((lthan n m)->(leseq nm)). 
Lenuna non_ltO (n :nat)-(lt han n 0). 
Lemma suc_leseq: (n ,m:nat)(leseq (S n)(S m))->(leseq nm). 
Lemma lt01 (x:nat) (x=O\/x=one\/(lthan one x)) . 
Lemma nOnllt (n:nat) (-(n=O)->-(n=one)->(l t han one n)). 

Definition before [n:nat; P:nat->Pr op] : = ((k:nat) Cl than k n)->(P k) ) . 

Lemma (• Course of value induction •) 
cv_ind (P:nat->Prop)((n:nat)((before n P) - > (P n )) -> (n:nat ) (P n)). 

Fixpoint plus (n:nat] 
Cases n of 

end. 

Lemma plus_altsuc 
Lemma plus_altzero 
Lemma plus _ass 

Lemma plus _com : 

nat -> nat : "' [m:nat] 

=> m 
(S p) => (S (plus pm)) 

(n,m :nat) (plus n (S m)) = (S(plus n m)). 
(n:nat) (plus n O)=n. 
(n , m, k: nat) (n , m,k: nat) 
(plus n (plus m k))=(plus(plus n m) k). 
(n , m:nat) (plus n m) =(plus m n). 

Fixpoint times (n:nat] nat -> nat : = [m:nat ] 
Cases n of 

0 => 0 
I (S p) => (plus (times p m) m) 

end. 
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Lemma distr 

Lemma timesaltzero 
Lemma timesaltsuc 
Lemma times _ass 

HENK 8ARENDREGT AND HERMAN 0EUVERS 

(n,m,k: nat) (n,m,k: nat) 
(times (plus nm) k)=(plus(times n k)(times m k)) 
(n:nat) (times n O)=O. 
(n,m:nat) (times n (S m))=(plus(times n m) n). 
(n,m , k :nat)(times n(times m k))=(times(times n m)k). 

Definition div (nat - >nat - >Prop) 
: " [d , n :nat](EX x:natl(times x d):n). 

Definition propdiv (nat->nat->Prop) 
:= [d ,n:nat)((lthan one d)/\(lthan d n)/\(div d n)). 

Definition prime nat -> Prop 
:= [n:nat]((lthan one n)/\-(EX d:nat l (propdiv d n))). 

Definition primediv nat->nat->Prop 
:= [p,n:nat) (prime p)/\(div p n). 

(• Some lemmas omitted •) 

(• has prime divisor • ) 
Definition HPD nat->Prop := [n: nat) (EX p:natl (primediv p n)). 

Theorem numbers_gtl_have_primediv (n:nat) (lthan one n)->(HPD n). 

(••···························································••) 
As stated before, from here one can prove Eucl id 's theorem that there are infinitely 
many primes. ln order to do this one needs to know that if d divides both a and 
a+b, then it divides b (introduce cut-off subtraction for this and prove some lemmas 
about it). 

4.:J. Autarkic Computations 

We have so far described how to forma1ize definitions , statements and proofs. An
other important aspect of mathematics is computing. (In order to decide whether 
statements are true or simply because a numerical value is of interest) . The follow
ing examples are taken from [Barendregt 1997]. These are examples of statements 
for which computations are needed. 

(!) [,/45] 6, where [r] is the integer part of a real 

(2) Prime(61) 

(3) (x + l)(x + !) x 2 +2x+ l 

In principle computations can be done within an axiomatic framework, in particular 
within predicate logic with equality. But then proofs of these statements become 
rather long. E.g. 

(x + 1)2 = (x + ! ) · (x +I) 
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(x + !) · x + (x + !) I 

x·x+ l x+x·l+l 1 

x2 +x+x+1 

x 2 + 2 · x + 1. 
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This is not even the whole story. Each use of'=' has to be justified by applying an 
axiom, substitutions and the fact that+ preserves equality7 . 

A way to handle (1) is to use the Poincare principle extended with the reduc
tion relation ----»i for primitive recursion on the natural numbers. Operations like 
f(n) = [Jn] are primitive recursive and hence are >.-definable (using ----»pi) by 
Recnat introduced in Section 3.8. Then, writing roi = 0, r11 = S 0, .. , it follows 
from the Poincare principle that the same is true for 

since r61 = r61 is formally derivable and we have p r451 -'"/Jt r61 . Usually, a proof 
obligation arises that Fis adequately constructed . For example, in this case it could 
be 

'In (Fn) 2 :S n < ((Fn) + 1)2
. 

Such a proof obligation needs to be formally proved, but only once; after that 
reductions like 

can be used freely many times. 
In a similar way, a statement like (2) can be formulated and proved by construct

ing a >.-defining term K Prime for the characteristic function of the predicate Prime. 
This term should satisfy the following statement 

'r/n ((Primen t-t /(Primen = r11) & 

(KPrimen = roi V KPrimen = r11
)] . 

which is the proof obligation. 
Statement (3) corresponds to a symbolic computation . This computation takes 

place on the syntactic level of formal terms. There is a function g acting on syntactic 
expressions satisfying 

g((x + I)(x + ! ) ) = x2 + 2x + !, 

that we want to >.-define. While x +I · Nat (in context x: Nat ), one has 'x + 
l' : term{Nat). Here term( Nat ) is an inductively defined type consisting of the 
terms over the structure (Nat,+, x , 0, 1). Using a reduction relation for primitive 
recursion over this data type, one can represent g, say by G, so that 

G'(x + I)(x + !) '--»~, 'x2 + 2x + ! '. 
~,-T-lu-·,-;,-w-hy-,-om_e_m_a-th_e_m-at-k-;a-n,-may be turned off by logic. But these steps have to be done. 

Usually they are done within a fraction of a second and unconsciously by a mathematician. 
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Now in order to finish the proof of (3), one needs to construct a self-interpreter E, 
such that for all expressions p : Nat one has 

E 'p' """'*P• p 

and prove the proof ob ligation for G which is 

It follows that 

Now, since 

\lt'term( Nat ) E(Gt) = E t. 

E(G'(x + ! )(x + I)') = E '(x + i )(x + ! ) '. 

E(G'(x + i )(x + I ) ') -'>p, E 'x2 + 2x + I ' 

-*/3• x
2 + 2x + 1 

E '(x + ! )(x + I)' -->p, (x + I )(x + ! ), 

we have by the Poincare principle 

(x + l )(x + 1) = x 2 + 2x + I. 

Bureaucratic details how to treat free variables under E are omitted. 
The use of inductive types like Nat and term( Nat ) and the corresponding re

duction relations for primitive reduction was suggested by Scott [1970] and the 
extension of the Poincare principle for the corresponding reduction relations of 
primitive recursion by Martin-LOf [1984]. Since such reductions are not too hard to 
program, the resulting proof checking still satisfies the de Bruijn criterion. 

The general approach is as follows. In computer algebra systems algorithms are 
implemented by special purpose term rewriting. For example for polynomial ex
pressions pone has for (formal) differentiation and simplificat ion the following. 

p -tdiff 

P -tsimpl 

-tdiff Pdiff - nf = P1 i 

-tsimpl ps impl-nf = P2-

In this way the funct ions fdiff(p) = p 1 and fsimpl (P) = P2 are computed. In type 
theory with inductive types and t-reduction these computations can be captured 
as fo llows. 

Fdiff P -* fm P1i 

Fsimpl P ---'* /36• P2-

This is like replacing special purpose computers by the universal Turing-von Neu
mann computer with software. 

In [Oostdijk and Geuvers 2001] a program is presented that, for every primitive 
recursive predicate P, constructs the lambda term I< p defining its characteristic 
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function and the proof of the adequacy of Kp. That is, one proves 'v'n:Nat.P(n) H 

l<p(n) = 1 (generically for all primitive recursive predicates P). In this way, proving 
P(n) can be replaced by computing Kp(n). The resulting computations for P = 
Prime are not efficient, because a straightforward (non-optimized) translation of 
primitive recursion is given and the numerals (represented numbers) used are in a 
unary (rather than n-ary) representation; but the method is promising. In [Caprotti 
and Oostdijk 2001], a more efficient ad hoe definition of the characteristic function 
of Prime is given, using Pocklington's criterion, based on Fermat's small theorem 
about primality. Also the required proof obligation is given. In this way it can be 
proved, formally in Coq, that a number like 1223334444555554444333221 is prime 
(but also bigger numbers, some of 44 digits!) So the statements in the beginning of 
this subsection can be obtained by computations. 

Another use of reflection is to show that a function like 

/(x) = e3
:i:

2 

+ J1 + sin2 x + 

is continuous. Rather than proving this by hand one can introduce a formal language 
L, such that a description of/ is among them, and show that every expression e: L 
denotes a continuous function. 

5. Proof assistants 

Proof assistants are interactive programs running on a computer that help the 
user to obtain verified statements (within a given mathematical context). This 
verification can be generated in two ways: automatically by a theorem prover, or 
provided by the user with a proof that is checked by the machine. 

It is clear that proof checking is not automated deduction. The problem of decid
ing whether a putative proof is indeed a proof is decidable; on the other hand the 
problem whether a putative theorem is indeed a theorem is undecidable. Having 
said this, it is nevertheless good to remark that there is a spectrum ranging from 
on the one hand pure proof-checkers to on the other hand pure automated theorem 
provers. A pure proof-checker, to which one has to present an entire fully formalized 
proof, is impractical, because it is difficult to provide these proof-objects. On the 
other hand a pure automated theorem prover (that finds a proof if a statement 
A is provable and tells us that there is none otherwise) is impossible for theorems 
in theories as simple as predicate logic. Automated deduction is in general only 
possible as a partial algorithm (providing a proof if there is one, running forever 
otherwise) . 

For some special theories, like elementary geometry (which is decidable), a total 
algorithm may be possible (in the case of geometry there is the excellent theorem 
prover of Wu [1994]). In most cases an automated theorem prover requires that the 
user gives hints. Although this chapter is not about automated theorem provers, we 
would like to mention Otter [1998] for classical predicate logic, the system of Bibel 
and Schmitt [1998] for classical predicate logic with equality, Boyer and Moore's 
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!1997] theorem prover Nqthm, based upon primitive recursive arithmetic , and Wu's 
[1994] geometry theorem prover that was already mentioned. 

At the other end of the spectrum a user-friendly proof-checker usually has some 
form of automated deduction in order to make it more easy for the user to provide 
proof-objects. Proof-assistants consists of a proof-development system together with 
a proof-checker. 

5.1. Comparing proof-assistants 

We will discuss several proof-assistants. All systems except Agda work with proof 
scripts that are a list of tactics needed to make the proof-assistant to verify the 
validity of the statement. The proof-assistants fall into two classes: those with proof
objects and those without proof-objects. 

In the case of a proof-assistant with proof-objects the script generates and stores a 
term that is (isomorphic to) a proof that can be checked by a simple proof checker. 
This makes these systems highly reliable. In principle someone, who is doubtful 
whether a certain statement is valid, can download a proof-object via the internet 
and locally verify it using his or her own trusted proof checker of relatively small 
size. 

Proof-assistants that have no proof-objects come in two classes. The first one 
consists of systems that in principle can translate the proof-script into a proof
object that can be ver ified by a small checker. In this case the proof-script can be 
considered as a non-standard proof-object. In order to make this translation these 
systems just need some system specific preprocessor after which a trustworthy check 
can be performed. The second class consists of proof-assistants for which there is 
not (yet) a way to provide a proof-object with high reliability. So for the correctness 
of theorems accepted by assistants in th is class one has to trust these systems. The 
advantage of these kind of systems usually is their larger automated deduction 
facilities and (therefore) their larger user-friendliness . 
We will discuss the following proof-assistants. 

system proof-objects 

Coq, Lego, Agda yes 
Nuprl, HOL, Isabelle non-standard 
Mizar, PVS, ACL2 no 

Coq, Lego and Agda 

Of these three systems Coq is the most developed one. The systems Coq and Lego 
are based on versions of the calculus of constructions extended with inductive types. 
For the logical power of this formal system, see [Aczel 1999] and the references 
contained therein. An important difference between the proof-assistants is in their 
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computational power. Both systems admit the Poincare principle for fich-conversion. 
This means that there are deduction steps like the following ones. 

Reftexive(R) 
----Ii 

'<:/x.Rxx 

A{lx} 
-{Jli 
A(x) 

and 
A{fac{4}} ---•• A{24} ' 

[Here one assumes to have defined Reftexive(R) = '<:/x.Rxx, I = Ax.x and fac as the 
function representing the factorial .} One of the differences between Coq and Lego 
is that in Lego one can introduce other notions of reduction for which the Poincare 
principle is assumed to hold (including non-terminating ones). 

Both Coq and Lego create proof-objects from the proof-scripts and store them. 
These proof-objects are isomorphic to natural deduction proofs. The two systems 
allow impredicative arguments as used in actual mathematics, but argued to be po
tentially unreliable by Poincare and Martin-LOf. The system Agda is similar to Coq 
and Lego, except that it is based on Martin-LOf type-theory in which impredicative 
quantifications are not allowed. The Poincare principle can be assumed by the user 
for any notion of reduction that is proved to be strongly normalizing. Agda is not 
so much 'tactics based' as Coq and Lego. In Agda one edits a proof term by 'filling 
in the holes' in an open term . The system acts as a structure editor, providing 
support for term construction. 

Nuprl, HOL and Isabelle 

Constable et al. 's [1986] system Nuprl does have proof-objects, but a judgment 

f-po A, 

indicating that p is a proof of A, is not decidable. The reason for this is that the 
Poincare principle is assumed not only for fidt-convcrsion, (the intensional equality) 
but also for extensional equality. See Section 2.8. So there is a rule 

P' A(t) q' (t = s) 

p' A(s) 

So, Nuprl is based on an extensional type system. This implies that type checking 
p : A? (TCP, see Section 2.1) is no longer decidable and therefore proofs cannot 
be checked. However, there are 'expanded' proof-objects d that can establish that 
p: A. In fact, the d takes into account the terms q for which q : t = s. So these d 
serve as the 'real' proof-objects. 

The proof-assistant HOL [1998] is based on Church's [1940] simple type theory. 
This is a classical system of higher order logic. That HOL uses non-standard proof
objects has a different reason. HOL does not satisfy the Poincare principle for any 
conversion relation. As a consequence computations involving recursion become 
quite lengthy when converted to a proof-object (for example establishing by a proof 
that I- fac Cn = Cn!)· Therefore the design decision was made that proof-objects 
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are not stored, only the proof-scripts . Even if a proof of fac c11 = C 11! may be long, 
it is possible to give it a short description in the proof-script. Induction is done by 
defining an inductive predicate in a higher order way as the smallest set satisfying 
a closure property. 

Also Isabelle is based on intuitionistic simple type theory. But this proof-assistant 
is fine-tuned towards using this logic as a meta-logic in which various logics (for 
example first-order predicate logic, the systems of the lambda cube or higher or
der logic) are described internally, in the Logical Framework style. This makes it 
having non-standard proof-objects. Again the system does not satisfy the Poincare 
principle, but avoids the problem by not considering proof-objects. Both assistants 
HOL and Isabelle have pretty good rewrite engines, needed to run the non-standard 
proof-objects. 

It should be emphasized that HOL and Isabelle did not fail to adept the PoincarC 
principle because it was forgotten, but because the problem of equational reasoning 
was solved in a different way, by the non-standard proof-objects in the form of 
the tactics. It makes formalizing more easy, but one cannot use proof-objects for 
example to see details of the proof or for program extraction. However, it is in 
principle not difficult to modify either HOL or Isabelle to create and store proof 
objects. 

Mizar, ACL2, PVS 

Mizar [1989] is based on a form of set theory (Tarski-Grothendieck, that is ZFC 
extended with an axiom expressing the existence arbitrary large cardinals). It does 
not work with proof-objects nor does it have the Poincare principle. The system has 
some automated deduction and a user-friendly set of tactics. In fact a nice feature 
of the system is that the proof-script is close to an ordinary proof in mathematics 
(which are internally represented as proofs in set theory). An impressive collection 
of results is in the Mizar library. It seems that in principle it is possible that the 
Mizar scripts are translated into a proof-object . 

ACL2 [2000] is an extension of the theorem prover of Boyer-Moore. It is based on 
classical primitive recursive arithmetic and it is used in industry. It is not possible 
for the user to construct inductive types, but there is a powerful built-in induction: 
a user can define his own well-founded recursive functions (up to fo recursion) and 
let the system compute with them. (The functions are actually Lisp functions.) 

PVS [1999] again is based on classical simple type theory. It is without proof
objects and exploits this by allowing all kind of rewriting, for numeric and symbolic 
equalities. The system is very user-friendly because of automated deduction that is 
built in. The system allows subtypes of the form 

A= {x' BI P(x)). 

If the system has to check a : A it will generate a proof-obligation for the reader: 
"prove P(a)". Up to our knowledge no effort has been made to provide PVS with 
proof-objects. 
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Comparison 

The proof-assistants considered fo llow the following pattern: 

Agda-Coq-Lego-Nuprl-HOL-Isabelle-Mizar-ACL2-PVS. 

Agda, Coq and Lego are to the left, indicating reliability (Agda given the first 
place because it has only predicative logic; Coq coming second, since only strongly 
normalizing rewrite rules may be added) . After that follow Nuprl, HOL and Isabelle, 
with their non-standard proof-objects (Nuprl coming first for the same reasons as 
Agda; Isabelle coming last, because the extra layer making things a bit harder to 
manage) . Finally come Mizar, ACL2 and PVS, because they do not work with 
proof-objects. We put PVS last, because every now and then bugs are found in this 
system). 

On the other hand, the order for internal automation is the opposite: ACL2 and 
PVS win and Agda loses. Of course eventually proof-assistants should be developed 
that are both reliable and user-friendly. The following judgments are based on some 
intuition and should not be taken too seriously. 

Ass. p.o. reliab. pp logic dep.t. ind .t au tom. #users 

Agda yes +++ {JliLR 1 int. pred. yes yes none8 

Coq yes ++ {JoiR2 int. yes yes + ++ 
Lego yes ++ {JoiR 1 int. yes yes + + 
Nuprl ++ {JoiR, int. yes yes + ++ 
HOL n.s. ++ none cl. no yes ++ ++ 

Isabelle n.s. ++ none t.b.s. no no ++ ++ 
Mizar none + none cl. yes no + ++ 
ACL2 none + R, pra no yes9 +++ +++ 
PVS none none cl. no no +++ +++ 

8There is a little use of higher order unification 
9Basica!ly, there's only one inductive type in which the user 'codes' his induction 
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Ass. name of the Proof Assistant ; 

p.o. proof-objects; 

n.s . non-standard; 

reliab. reliability; 

PP Poincare principle; 

dep.t. dependent types; 
ind.t. inductive types; 

autom. degree of automation; 

int . intuitionistic logic preferred; 

pred. only predicative quant ification; 

cl. classical logic; 

pra primitive recursive arithmetic (so no quantifiers); 

t.b .s. to be specified by the user; 

R1 arbitrary notion of reduction; 

R2 structurally well-founded recursion; 

R3 arbitrary provable equality; 

R4 lo-recursion. 

There are very many other proof-assistants. See [Digimath 2000] for an impressive 
list. 

5.2. Applications of proof-assistants 

At present there are two approaches to the mechanical verification of complicated 
statements. The fi rst one, that we may call the pragmatic approach, uses proof assis
tants with many complex tools to verify the correctness of statements. These tools 
include theorem provers and computer algebra systems, the correctness of which 
has not been verified (as a matter of fact, computer algebra systems are often not 
formally correct at all). Even if these systems may contain bugs the correctness of 
hardware systems and (relatively small but critical) software systems (like proto
cols) is dramatically increased, see [Rushby and Henke 1993] and [Ruess, Shankar 
and Srivas 1996]. Proof-assistants that are used include PVS, Nuprl, Isabelle and 
HOL. 

The other approach , that we may call the fu ndamental one, aims at the highest 
degree of reliabi lity. In this approach one only uses proof-assistants with a proof
checker that satisfies the de Bruijn criterion, i.e. have a small verifying program. 

In this chapter we have focused our attention on the second approach. It should 
be remarked that even in this approach there is some spectrum of reliability. If 
the Poincare principle is adopted for .BOt-conversion, the verifying program is more 
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complex than the one for just ,6c5-conversion. This is natural and fair, since adopting 
the Poincare principle for i-conversion has as consequence that primitive recursive 
computations within a proof come without proof obligations. In fact the pragmatic 
proof-assistants can be viewed as a strong use of the computational power as pro
vided by a form of the Poincare principle. 

Another parameter in a fundamental proof-assistant is the choice of strength of 
the underlying type system and hence the related logical system. For example, one 
may use first-order, second-order or higher-order logic. This parameter determines 
the logical strength of the proof system. 

Rather .than making a choice for the computational and logical strength one may 
think of a universal 10 system in which these two can be set according to the taste 
and application area of the user . It is hoped (and expected) that it is possible 
to construct a universal proof-assistant that is sufficiently efficient. Also there is 
a considerable foundational interest in the enterprise of constructing user-friendly 
proof-assistants. One has to realize which steps are obvious to the mathematician 
and provide suitable tools. 

It is a (possibly long term) goal of the second approach to make the formalization 
of an informally known mathematical proof as easy as wr iting a mathematical paper 
say in Ei-'fEX. At the same time the efficiency should be comparable to efficient 
systems for computer algebra. 

Several notions in classical mathematics are not directly available in the con
structive approach of type theory. Next to the failure of the excluded middle these 
include quotient sets, subsets defined by a property and partial functions. It is for 
good reasons that these constructions are not available. In the constructive type 
theoretic approach the notion a : A should be decidable, a property that is lost in 
the presence of types representing undecidable sets. 

In order to increase the ease of formalizing proofs several tools are being con
structed that enhance the power of the fundamental approach. In this way even
tually the power of the fundamental approach may be equal to that of the present 
day pragmatic one. 

When the goal of easy formalization has been reached not only spin-off in system 
design, but also in the development of mathematics is expected. First of all there 
may emerge a different system of refereeing. People will only submit papers that 
are correct. The referee can focus on the judgment whether the paper is of interest 
and point out relations with other work. Then there will be an impact on teaching 
mathematics. The notion of proof can be taught by patient computers. 

It is also to be expected that eventually proof-assistants will help the working 
mathematician. Arbitrary mathematical notions can be represented on a computer; 
not just the computable ones, as is presently the case in systems of computer 
algebra. The interaction between humans and computers may lead to fruitful new 
mathematics, where humans provide the intuition and machines take over part of 

IOQf course there cannot be a universal proof-assistant, due to G&l.el's t heorem. The word 
universal is used in the same way as ZFC is seen as a universal foundation: it captures large parts 
of mathematics 
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the craftsmanship. 
Next to these theoretical aspects, there is a potential practical spin·off in the 

form of program extraction. In case a statement of the form 

\lx3y.A(x, y) 

has been proved constructively, an algorithm finding the y in terms of the x can 
be extracted automatically. See [Mohring 1986, Paulin.Mohring and Werner 1993, 
Parent 1995]. 

For a discussion of issues related to (the future of) proof.assistants, see also the 
QED-manifesto in [Bundy 1994] (pp. 238- 251). 

Many (often smaller) proof.assistants we have not mentioned. For a (probably 
incomplete) but extended survey see [Digimath 2000]. 
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