68 4 Enhanced Suffix Arrays

The following observation is worth mentioning. If in phase 2, the se-
quence of suffixes [S; | 1 < i < n,i mod 3 = 1] would also be sorted recur-
sively by the skew algorithm, then this would yield the recurrence

T(n) =T(n/3) +T(2n/3) + O(n)

According to the master theorem, this recurrence has the solution 7'(n) =
O(nlogn). In other words, the resulting algorithm would not be linear!

4.1.2 Induced sorting

In this section, we will explain another interesting linear-time SACA de-
vised by Nong et al. [244]. It shares two key features with the skew al-
gorithm: it is a recursive algorithm and it uses the method of induced
sorting. We speak of “induced sorting” whenever a complete sort of a se-
lected subset of suffixes can be used to “induce” a complete sort of other
subsets of suffixes. In the skew algorithm, for example, a complete sort of
the suffixes {S; | 1 <i < n,i mod 3 # 1} can be used to induce a complete
sort of the suffixes {S; | 1 <i <n,imod 3 = 1}.

The induced sorting algorithm? of Nong et al. [244] heavily depends on
the work of Ko and Aluru [184] (the reader can find the description of
several precursor algorithms in [262]). Ko and Aluru classified suffixes
into S-type and L-type suffixes and showed that a complete sort of the S-
type suffixes can be used to induce a complete sort of the L-type suffixes
(or vice versa). The contribution of Nong et al. is the insight that it is
enough to sort the usually small set of LMS-substrings and to use it to
induce the order of all suffixes. Moreover, the lexicographic order of the
LMS-substrings is determined by the same principle, using recursion if
needed.

In the rest of this section, let S be a string of length n + 1 that is ter-
minated by the sentinel $. The suffixes of S are classified into two types:
Suffix S; is S-type if S; < S;;1 and it is L-type if S; > S;.;. The last suffix,
the sentinel s, is S-type. We use a bit array 7'[1..n + 1] to store the types
of the suffixes: 7[i] = 0 means that suffix S; is L-type and T[] = 1 means
that it is S-type. For better readability, we write T[i] = L instead of 7'[;] = 0
T[i] = S instead of T[i] = 1.

Lemma 4.1.7 All suffixes can be classified in O(n) time by a right-to-left
scan of S.

Proof 1t is readily verified that S; is S-type if (a) S[¢] < S[i + 1] or (b) S[i] =
S[i + 1] and S;;, is S-type. Analogously, S; is L-type if (a) S[i] > S[i + 1] or

2Nong et al. speak of “almost pure induced-sorting” but we will use the shorter term
“induced sorting.”



4.1 Suffix arrays 69

g D )
S ilmli|lmimim|i|ls|i|s|m|lils|ils|s|i|i|p]|il$
type |slu]slole]o]s]uols{of{ols|{ie]sicele]s]s|t|{L]s
LMS * * * * * * *

Figure 4.6: The type classification of the suffixes of the string S proceeds
from right to left. It starts with the S-type suffix Sy = $.
Suffixes S;9 and Sy, are L-type because p > ¢ > $, whereas
suffix Sj3 is S-type because i < p. Both suffixes 57 and Sig
start with the same character i, so S;; is S-type because Sz
is S-type. The same argument applies to the suffixes S;; and
Sie: S5 is L-type because Sj¢ is L-type. The LMS-positions of
S are marked with an asterisk. For example, 3 is an LMS-
position because suffix S; is S-type and the preceding suffix
Sy is L-type.

(b) Si] = S[¢ + 1] and S;4; is L-type. Therefore, starting with the S-type
sentinel $, in a right-to-left scan of S, we can determine the types of all of
its suffixes. O

Figure 4.6 shows an example of type classification.

Lemma 4.1.8 An S-type suffix is lexicographically greater than any L-type
suffix starting with the same first character.

Proof For an indirect proof, suppose that there is an S-type suffix S, and
an L-type suffix S; so that S;[1] = S[i| = a = S[j] = 5;[1] and S; < S;. We can
write S; = aubv and S; = aucw, where b # ¢ are characters and u, v, and w
are (possibly empty) strings.

1. Suppose that u consists solely of a’s. Because S; is S-type, it follows
that « < b. Similarly, since S; is L-type, it follows that a > ¢. The
combination of these two facts yields ¢ < b. However, S; < S; implies
b < ¢, a contradiction.

2. Otherwise, u contains a character other than «. Let d be the leftmost
character in v that is different from a. Because S; is S-type, it follows
that a < d. Similarly, since S, is L-type, it follows that d > a. This
contradiction proves the lemma.

O

Corollary 4.1.9 In the suffix array of S, among all suffixes that begin with
the same character, the L-type suffixes appear before the S-type suffixes.



70 4 Enhanced Suffix Arrays

Proof Direct consequence of Lemma 4.1.8 O

We employ an array C of size ¢ to divide the suffix array of S into buckets
(without loss of generality, we assume that all characters from the ordered
alphabet Y. appear in the string S). For every ¢ € X, we define C[c] =
> pespee Cnt[b], where cnt[b] is the number of occurrences of character b in
S. In other words, if we consider all characters in ¥ that are smaller than
¢, then C[c] is the overall number of their occurrences in S. The c-interval
[i..j] can be determined by ¢ = C[c] + 1 and j = C[c + 1] (Where ¢ + 1 is the
character that follows ¢ in the alphabet ¥). In the following, we call the
c-interval the c-bucket. Every c-bucket [i..j] can further be divided into the
interval [:..k] containing all L-type suffixes starting with character ¢ and
the interval [k + 1..j] containing all S-type suffixes starting with character
c. The interval [i..k] is called the L-type region and [k + 1..j] is called the
S-type region of the c-bucket (k =i — 1 or k = j is possible, i.e., the S-type
region or the L-type region of the bucket may be empty).

Definition 4.1.10 A positioni, 1 <i <n+1,in Swith T[i—1] =Land T[] =
S (i.e., suffix S, ; is L-type and suffix S; is S-type) is called LMS-position
(leftmost S-type position); see Figure 4.6.

Now we are in a position to formulate the induced sorting algorithm.
Phase 0: Compute the type array 7 by a right-to-left scan of S.

Phase I: Compute all LMS-positions in S and sort the corresponding suf-
fixes in ascending lexicographic order (we will elaborate on this phase
later).

Phase II:

1. Scan the sorted sequence of LMS-positions from right to left. For
each position encountered in the scan,® move it to the current end of
its bucket in A (initially, the end of a c-bucket is the index C[c + 1)),
and shift the current end of the bucket by one position to the left.

2. Scan the array A from left to right. For each entry A[;] encountered
in the scan, if Sy, is an L-type suffix, move its start position Afi] -1
in S to the current front of its bucket in A (initially, the front of a c-
bucket is the index C|c| + 1), and shift the current front of the bucket
by one position to the right.

3. Scan the array A from right to left. For each entry A[:] encountered in
the scan, if 5S4 is an S-type suffix, move its start position A[i] -1 in

3Each undefined entry | is ignored because it does not correspond to a suffix.



4.1 Suffix arrays 71

S to the current end of its bucket in A (initially, the end of a c-bucket
is the index C|c + 1]), and shift the current end of the bucket by one
position to the left.

An illustration of phase II can be found in Figure 4.7. It should be
stressed that in step 3, the suffixes starting at LMS-positions (these are
of S-type) are already in the array A. This does no harm because each
of these suffixes will be overwritten before it is reached in the right-to-left
scan of A; see Lemma 4.1.12.

Lemma 4.1.11 Step 2 of phase II correctly sorts all L-type suffixes of S.

Proof First, we show that every L-type suffix is placed at its correct posi-
tion. We proceed by induction on the number ¢ of placed L-type suffixes.
Clearly, A[1] =n+ 1 because $ appears at position n+ 1in S, and $ is the
lexicographically smallest character. Furthermore, Sy;-1 = S, = ¢$ is an
L-type suffix because S[n| = ¢ > $ = S[n + 1]. Consequently, position n is
moved to the front of the c-bucket. This is certainly correct because the
suffix S, is the lexicographically smallest suffix starting with character
c. As an inductive hypothesis, suppose that ¢ L-type suffixes have been
placed correctly. We have to show that the (¢ + 1)-th L-type suffix will be
placed correctly. Suppose that in the left-to-right scan of the array A we
are at index i > 1 with A[{] # 1, and let A[{] = j + 1 for some j > 1. That
is, S;;1 is either an S-type suffix starting at an LMS-position or an L-type
suffix that has already been placed, and suffix S; is the (¢ + 1)-th L-type
suffix that has to be placed. Let ¢ = S[j]. For a proof by contradiction,
suppose that when we move the start position j to the current front of the
c-bucket in A, there is already an L-type suffix S in the c-bucket that is
lexicographically greater than S;. So in the c-bucket, k is left to j. This
means that there must be an index ' < i so that A[i'] = k + 1. In other
words, k + 1 precedes j + 1 in the array A. Because both S; and S, are
in the c-bucket, we have S; = ¢S;41 and Sy = ¢Sky1. In conjunction with
S; < Sk, this has S;;; < Sk as a consequence. Note that S;,, is either
an S-type suffix starting at an LMS-position or an L-type suffix, and the
same is true for S;,,. According to the inductive hypothesis, S-type suf-
fixes starting at LMS-positions and the first ¢ placed L-type suffixes are
in the correct order. Thus, j + 1 must precede & + 1 in the array A. This,
however, contradicts our previous conclusion that k + 1 precedes j + 1 in
A. We conclude that the (q + 1)-th L-type suffix S; is placed correctly.
Second, we prove that every L-type suffix will actually be placed dur-
ing the scan. For an inductive proof, assume that the ¢ lexicographically
smallest L-type suffixes have been placed. Let S; be the (¢ + 1)-th lexico-
graphically smallest L-type suffix. We have to show that S; will be placed
during the scan. Clearly, S;;; < S; because S; is L-type (thus, if S;,, ap-
pears in the array A, then it must appear left to S;). Moreover, S5, is



72

4 Enhanced Suffix Arrays
5 10] 1 13 I
S idmii mim|if{s|i{s]m|i|s|i|s})s]ili|lp|]il$
type | SpL|s|LjLjLf{sjrf{sjefrf{sjLr|{sjLjrys]sjLiLy]s
* * * * *
$ i m p s
LMS |21 171 3|7 (12{9 |14
L-type suffixes 21120 17131 711219134121 6(11]15|4}19]16] 8 |13{10|15
S-type suffixes 2112017y 1 |37 3 | 7 |12] 9 |14
31187 (129 |14

Figure 4.7: The upper part shows the type classification of the suffixes of

string S. The lower part illustrates phase II of the induced
sorting algorithm. In phase I, all suffixes that start at LMS-
positions have been sorted. In step 1 of phase II, the sorted
sequence delivered by phase I is scanned from right to left
and the suffixes are placed—also from right to left—into their
buckets. After step 1, all suffixes that start at LMS-positions
appear in ascending lexicographic order in the S-type regions
of their buckets as shown in row “LMS.” In step 2 of phase II,
the array is scanned from left to right and L-type suffixes are
placed—also from left to right—into their buckets. After step
2, all L-type suffixes appear in ascending lexicographic order
in the L-type regions of their buckets as shown in row “L-type
suffices.” In step 3 of phase II, the array is scanned again
from right to left and the S-type suffixes are placed—again
from right to left—into their buckets. Step 3 overwrites S-type
suffixes that start at LMS-positions before they are reached in
the scan. By contrast, all L-type suffixes are unaffected since
the L-type and S-type regions of the buckets are disjoint. After
step 3, all S-type suffixes appear in ascending lexicographic
order in the S-type regions of their buckets as shown in row
“S-type suffices.” It follows as a consequence that all suffixes
are sorted lexicographically after step 3.



4.1 Suffix arrays 73

either a suffix starting at an LMS-position or an L-type suffix. By the in-
duction hypothesis, S;;; has been placed. Consequently, when the scan
reaches S;,,, the L-type suffix S; is placed. O

Lemma 4.1.12 Step 3 of phase II correctly sorts all S-type suffixes of S.

Proof The proof is very similar to the proof of the preceding lemma. First,
we show that every S-type suffix is placed at its correct position. We
proceed by induction on the number ¢ of placed S-type suffixes. For the
base case, note that all suffixes starting with the largest character ¢, must
be L-type. That is, the S-type region of the ¢,-bucket is empty, and hence
Aln + 1] corresponds to an L-type suffix. In the right-to-left scan of A4, let
i be the first (rightmost) index so that Sy;_1 = ¢S4 is an S-type suffix
(clearly, ¢ < ¢, and it is not difficult to show that : belongs to the c,-
bucket). The algorithm places the index A[:] — 1 at the very end of the
c-bucket. This is correct because Sy;-1 = ¢Sy is the lexicographically
largest suffix that starts with the character c¢. As an inductive hypothesis,
suppose that ¢ S-type suffixes have been placed correctly. We have to
show that the (¢ + 1)-th S-type suffix will be placed correctly. Suppose
that in the right-to-left scan of the array A we are at index 7, and let
Ali] = j+ 1 for some j > 1. That is, S;;; is either an L-type suffix or an
S-type suffix that has already been placed, and suffix S; is the (¢+1)-th S-
type suffix that has to be placed. Let ¢ = S[j]. For a proof by contradiction,
suppose that when we move the start position j to the current end of the
c-bucket in A, there is already an S-type suffix S; in the c-bucket that
is lexicographically smaller than S;. So in the c-bucket, k is right to j.
This means that there must be an index i > i so that A[i'] = k+ 1. In
other words, in the right-to-left scan of A, k + 1 is encountered before
J + 1. Because both S; and S are in the c-bucket, we have S; = ¢S;;; and
Sk = ¢Sky1. Moreover, S, < S; has S, < S;;; as a consequence. If S,
(Sk+1) is an L-type suffix, then it is at its correct position by Lemma 4.1.11.
Otherwise, if S;; (Sk41) is an S-type suffix, then it is at its correct position
by the inductive hypothesis. Therefore, in the right-to-left scan of 4, j + 1
must be encountered before k£ + 1, a contradiction to our assumption. We
conclude that the (¢ + 1)-th S-type suffix S; is placed correctly.

Second, we prove that every S-type suffix will actually be placed dur-
ing the scan. For an inductive proof, assume that the ¢ lexicographically
largest S-type suffixes have been placed, and let S; be the (¢ + 1)-th lexi-
cographically largest S-type suffix. We have to show that S; will be placed
during the scan. Clearly, S; < S;;; because S; is S-type (thus, if 5;,; ap-
pears in the array A, then it must appear right to 5;). If S, is an L-type
suffix, then it was placed correctly in step 2. Otherwise, if S;;, is an S-
type suffix, then it has also been placed by the induction hypothesis. In
both cases, S;;; was encountered before and S; is placed. O



74 4 Enhanced Suffix Arrays

The following notions are used in the formulation of phase I of the in-
duced sorting algorithm.

Definition 4.1.13 A substring of S that starts at an LMS-position and
ends at the next LMS-position is called an LMS-substring. By definition,
the sentinel is also an LMS-substring. Any suffix of an LMS-substring is
called an LMS-suffix.

Now let us elaborate on phase I, which is illustrated in Figure 4.8. Note
that steps 2 and 3 are verbatim the same as in phase II.

Phase I:

1. Scan the array 7 from left to right and place each LMS-position into
its bucket and into an array P (so if there are m LMS-positions, then
P has size m). To be precise, for each position j encountered in the
scan, if j is an LMS-position, move it to the current end of its bucket
in A (initially, the end of a c-bucket is the index C[c+ 1)), and shift the
current end of the bucket by one position to the left. Furthermore,
move j to the current front of array P (initially, the front of P is the
index 1), and shift the current front of P by one position to the right.

In this step, each LMS-position j represents the last character S[j] of
the LMS-substring that ends at j (and not suffix S; as in phase II).

2. Scan the array A from left to right. For each entry A[i| encountered
in the scan, if Sup;)-; is an L-type suffix, move its start position A[i] —1
in S to the current front of its bucket in A (initially, the front of a ¢-
bucket is the index C|[c] + 1), and shift the current front of the bucket
by one position to the right.

In this step, a position j with 7'[j] = L represents the LMS-suffix that
starts at position j and ends at the next LMS-position (and not the
L-type suffix S; as in phase II).

3. Scan the array A from right to left. For each entry A[i] encountered in
the scan, if Sy;)-1 is an S-type suffix, move its start position Afi] -1 in
S to the current end of its bucket in A (initially, the end of a c-bucket
is the index C[c + 1]), and shift the current end of the bucket by one
position to the left.

In this step, a position j with 7'[j] = S represents the LMS-suffix that
starts at position j and ends at the next LMS-position (and not the
S-type suffix S; as in phase II). Thus, if j is an LMS-position, then
it represents the LMS-substring that starts at position j and ends at
the next LMS-position.



4.1 Suffix arrays 75

Stilm{i{m|m{m|i|s|]i|sim|i|s|i]s|]s|]ili i|ls
type sitisfijrierisieisiLibLtisibLiStiLILLIS|SILILES
* * * *
3 i m p s
LMS |21 17{14}12{ 9| 7| 3

L-type suffixes
S-type suffixes

IN |
¢ recursion
S |3]4a]|s5]4]6]2
type SISILISILILLS
LMS ¥

1 3 4 516

LMS 74 4
L-type suffixes 716 1]13}]5
S-type suffixes 7lef1i2(4a413}]s

P 3 7 9 1‘B2 14 17|21
BRRERE
position 3. 4. 6. 5 7. 2. 1.

Figure 4.8: Phase I of the induced sorting algorithm.



76 4 Enhanced Suffix Arrays

4. Initialize an array LN[1..n + 1] that will contain the new lexicographic
names of the LMS-substrings, and initialize the counter i for new
lexicographic names to 1. Because the sentinel is the lexicographi-
cally smallest LMS-substring, it gets the smallest new lexicographic
name, i.e., LN[n + 1] = 1. Furthermore, initialize prev = n + 1. Now,
starting at index i = 2, scan the array A from left to right. Whenever
an entry A[;] = j is encountered so that j is the start position of an
LMS-substring do the following;:

e Compare the LMS-substring starting at position prev in S with
the LMS-substring starting at position j in S (character by char-
acter).

e If they are different, increment i by one.

e Set LN[j] =7 and prev = j.

5. Scan the array P[1..m] from left to right and for each £ with 1 <%k <m
set S[k] = LN[P[K]].

6. If © = m, then the LMS-substrings are pairwise different. Compute
the suffix array SA of the string S directly by SA[S[k]] = k.

7. Otherwise, recursively compute the suffix array SA of the string S.

8. The ascending lexicographic order of all the suffixes of S that start
at an LMS-position is P[SA[1]], P[SA[2]],..., P[SA[m]].

Lemma 4.1.14 After steps 1-3 of phase I, LMS-substrings appear in lexi-
cographic order in A.

Proof As already mentioned, in phase I an LMS-position j corresponds
to the last character S[j] of the LMS-substring ending at position j. By
contrast, in phase Il an LMS-position j corresponds to the suffix S;. After
step 1 of phase I, each LMS-position is in the S-type region of its bucket.
That is, the length 1 suffixes (last characters) of all LMS-substrings are
in the correct order in A. Now the proofs of Lemmata 4.1.11 and 4.1.12
apply with a grain of salt, and we conclude that after steps 1-3 all LMS-
suffixes of length greater than 1 are in the correct order in A.* Of course,
the sentinel (more precisely, its position n + 1) is still the first entry of
A. Therefore, all LMS-substrings appear in lexicographic order in A (note
that lexicographically adjacent LMS-substrings may be identical). O

By Lemma 4.1.14, LMS-substrings (represented by their start positions)
appear in lexicographic order in the array A. Thus, there are indices

4In step 1, an LMS-position j represents the length 1 LMS-suffix S[j|. In step 3, however,
j represents the LMS-substring starting at position j. So length 1 LMS-suffixes are no
longer represented.



4.1 Suffix arrays 77

1< <+ <i, <n-+1and positions ji,...,j, so that A[i;] = ji,..., Alin] =
Jjm (hence j,..., 7, is a permutation of P[1],...,P[m]). Step 4 renames
all LMS-substrings according to their lexicographic order in the array
A, where identical LMS-substrings get the same new name. To be pre-
cise, in step 4 we compare the current LMS-substring, say S[jk..jki1)
with the previous LMS-substring S[j;_1..jx]. Suppose that the previous
LMS-substring S[j;_;..jx] has got the new lexicographic name i. Now, if
Sljk--drs1]) = Slir_1.-jx)» then S[jr..jk+1] gets the same lexicographic name i.
Otherwise, S[ji..jx+1] gets the new lexicographic name i + 1. In both cases,
the lexicographic name of S[ji..jx11] is stored at position j, in array LN;
see Figure 4.8. The new string S is obtained by setting S[k] = LN[P[k]]
in step 5. Now, there are two possibilities (step 6 or step 7). Either all
LMS-substrings are pairwise different (which is equivalent to i = m after
step 4) or there are at least two identical LMS-substrings. In the former
case (step 6), the inverse suffix array ISA of the string S coincides with
S (viewed as an array). In the latter case (step 7), we recursively apply
the whole induced sorting algorithm to the string S to get its suffix array
SA; see Figure 4.8. So after step 6 or step 7, we know the lexicographic
order of all suffixes of S. Lemma 4.1.15 proves that step 8 yields the lex-
icographic order of all the suffixes of S that start at an LMS-position (by
means of the suffix array SA and the P array).

Lemma 4.1.15 We have S; < S; if and only if Sp; < Sp(;).

Proof Let u; be the string obtained by replacing every lexicographic name
in S; with the LMS-substring that is represented by this name. Further-
more, let v; be the string obtained from Spj;) by doubling every character at
an LMS-position. It is readily verified that u;, = v;. Moreover, u; < u; (Where
u; is defined analogously) if and only if Sp; < Spp;). Hence the lemma
follows. a

All in all, the induced sorting algorithm correctly computes the suffix
array. It remains to analyze its worst-case time-complexity. It is not dif-
ficult to see that each step in phases I and II takes at most O(n) time.
By definition 4.1.10, position 1 is not an LMS-position and there must be
at least one position in between two consecutive LMS-positions. Hence
|S| = m < |%']. It follows from the master theorem that the whole in-
duced sorting algorithm has a worst-case time complexity of O(n).

Implementation details of the induced sorting algorithm:

1. It is not difficult to see that if two LMS-substrings are identical, then
so are their type sequences. Consequently, in step 4 of phase I,
if one compares characters and types of LMS-substrings simultane-
ously, then the comparison can be stopped when there is a character



78 4 Enhanced Suffix Arrays

21120(17]1 141111 62| 5]4(19]/16/13] 8 10|15

OB EEBEE T T T T T T T T T T T T

sorted LMS-substrings

lexicographic names

[21]17]3[12[ 7] 9aa] [3] Jafs] [afe]a] Jaf [ ] |
S
[22]27[3]a2]7[ofaal [ | [ [ | [ |sfafs]ale[2]1]

Figure 4.9: Apart from the string S, one array suffices in an implementa-
tion of the induced sorting algorithm.

mismatch or a type mismatch (this is done in the original algorithm
by Nong et al. [244]).

2. Since m < [*}], the sorted LMS-substrings can be stored in the left
half of the array A and the array LN (later the string S and finally the
array SA) can be stored in the right half of A; see Figure 4.9. As a
matter of fact, it is possible to remove the type array 7' in the initial
call of the induced sorting algorithm and to integrate the type arrays
in recursive calls into the array A. Moreover, the pointers to the
(current) front/end of the buckets are solely required in the initial
call but not in recursive calls. In summary, the induced sorting
algorithm can be implemented in such a way that it keeps only the
string S (the input), the array A (the output), and the bucket pointers
of the initial call (for a constant-size alphabet, these pointers take
only constant space) in main memory; see [243] for details.

Exercise 4.1.16 Suppose that the word boundaries in a natural language
text have already been determined by a parser. These word boundaries
divide the text into tokens. As an example, consider the English sentence
“This is a text.” and the corresponding sequence of tokens “This,is,a,text”.
In this exercise, we assume that a text 7" is given as the concatenation of
the tokens, in which tokens are separated by a special separator symbol
#. We assume that 7" consists of k£ tokens and n characters (including all
occurrences of the separator symbol). In our example, 7' = This#is#a#text
consists of 4 tokens and 14 characters. Let P be the set of positions at
which a token starts, i.e., P = {1}U{i | 2 <i <n and T[i—1] = #}. The set of
all suffixes of T" starting with a full token is defined by {7, | p € P}, and the



4.2 The LCP-array 79

word suffix array WSA is a permutation of P specifying the lexicographic
order of the k suffixes from {7, | p € P}, i.e., it satisfies Twsaj1) < Twsajz <

- < Twsap- Devise an O(n) time and O(k) space algorithm to construct
the word suffix array of 7.

Exercise 4.1.17 A cyclic string of length n is a string S in which the char-
acter at position n is considered to precede the character at position 1.
The cyclic string linearization problem is the following: Choose a position
to cut S so that the resulting linear string is the lexicographically smallest
of all the n possible linear strings created by cutting S. Give an algorithm
that solves this problem in O(n) time.

4.2 The LCP-array

Throughout this book, lcp(u, v) denotes the longest common prefix between
two strings v and v, whereas lcs(u, v) denotes the longest common suffix of
u and v.

The suffix array is often augmented with the so-called LCP-array (or
LCP-table), containing the lengths of the longest common prefixes between
consecutive suffixes in SA. The formal definition reads as follows.

Definition 4.2.1 The LCP-array is an array of size n + 1 with boundary
elements LCP[1] = —1 and LCP[n + 1] = —1, and for all 7 with 2 < i < n we
have LCPM = “CP(SSA[i—l],SSA[i])‘-

Figure 4.10 shows the LCP-array of the string S = ctaataatg. The LCP-
array first appeared in the seminal paper of Manber and Myers [214] on
suffix arrays (where it was called Hgt array).

A suffix array enhanced with the corresponding LCP-array will hence-
forth be called an enhanced suffix array. More generally, the generic name
enhanced suffix array (and the acronym ESA) stands for data structures
consisting of the suffix array enhanced with additional arrays.

4.2.1 Linear-time construction

It is possible to modify some SACAs so that they compute the LCP-array
as a by-product of the suffix array construction. This has been shown
in [175] for the skew algorithm presented in Section 4.1.1 and in [107]
for the induced sorting algorithm presented in Section 4.1.2, but other
SACAs could probably also be modified to produce the LCP-array.
Another approach is to construct the LCP-array from an already con-
structed suffix array. To date, several different LCP-array construction
algorithms (LACAs) of this kind are known [33, 126, 174, 177,216, 264],
but to review all of them goes beyond the scope of this book. In this



