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SSAIm—l] and SsAlm] because IICP(SSAIm—ll’35AM)I = clm] = e < Z +1 = IS [Li + ell. ConseQuently. S [i..i + l] is not a common prefix 0f 35AM and SSAIj]. All in all. IICP(SSA[3']7 35AM” = e. D 
As in Chapter 3 ,  we say that an algorithm has time complexity (p(n), q(n)) 

if its preprocessing time is  p(n) and its query i s  time q(n). 

Lemma 4.2.8 There is an (0(n), 0(1))-time algorithm for answering longest 
common prefix queries between two suffixes o f  a string S .  

Proof W e  must show that after a linear—time preprocessing. ||cp(S¢, Sj)| can 
be computed in constant time for all positions 1 S i 5 j g n. Given string 
5 of length n.  one can compute the corresponding arrays SA, ISA, and LCP 
in 0(n)  time. Moreover, the LCP-array can be preprocessed in linear time 
so that range minimum queries can be answered in constant time; see 
Section 3.3. For i = j ,  we have ||cp(S.~,S,~)| = |S.-|. Otherwise. fori 7e j ,  we 
have 

I S. S. _ LCP[RMQc(|SA[i]+1,lSA[j])],iflSA[z’]<lSA[j] 
|°P( " ,)|— LCP[RMQc(|SA[j]+1,|SA[z'])],iflSALj]<|SA[2'] 

This is  a direct consequence of Lemma 4.2.7 because the indices 2" = lSA[z’] 
and j ,  = ISAU] safiSfy SSAH’] = Si and SSAUI] = S j .  El 

Corollary 4.2.9 There is an (0(n), 0(1))—time algorithm for answering 
longest common su‘fl‘ix queries between two prefixes of a string S .  

Proof Observe that Ics(S[1..i], S[1..j]) = Icp(S;e_",. +1, 332’]. +1). where S'e” denotes 
the reverse string of S .  This, in combination with the fact that 8"" can be 
obtained in linear time from S, implies that lcs(S[1..i],S[l..j]) can also be 
computed in constant time af ter  a linear-time preprocessing. III 

4.3 The Icp-interval tree 
Most concepts of this section originate from Abouelhoda et al. [1]. The 
idea to use RMQs in this context stems from Fischer and Heun [108]. 

To see the usefulness of lcp-intervals, let us have a second look at the 
enhanced suffix array of the string 5 = ctaataatg, which is  replicated in 
Figure 4.13. By definition 4.1.3. the a-interval i s  the interval [1.4], the 
aa-interval is  [1.2]. and the aat-interval is  also [1.2]. By contrast, there is 
no substring w of 5 so that the interval [1.3] is  an w-interval. The next 
definition allows us to identify such intervals solely by  means of the LCP— 
array. The declarations LCP[1] = —1 and LCP[n + 1] = —1 ensure that the 
definition also covers the interval [1..n]. 
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Figure 4. 13: Enhanced suffix array and lop—intervals of S = ctaataatg. 

Definition 4.3.1 An interval [Lj], 1 S i < j S n, in an LCP-array is called 
an lcp-interval of lop-value I if and only if 

1. LCP[z‘] < Z, 

2. LCP[k] zeforaukwithi+1 S i .  
3. LCP[k] = Z for at least one I: with i + 1 S k S j, 

4. LCPL)’ + 1] < Z. 

We will also use the shorthand €—[i.. j] for an lop-interval [i..j] of lcp-value 
Z, and [i..j] will be called Z—interval. Every index k, i +  l g k S j, with 
LCP[k] = Z is called Z-index (or lcp—index) of [11. j]. The set of all €-indices of 
an 6-interval [22. j] will be denoted by ZIndz'cesU, j). Furthermore. we will say 
that the lop-interval €-[i.. j] represents the string w = S[SA[i]..SA[i] + Z — 1], 
Where w is the longest common prefix of the suffixes SSAlila SSA[,-+1], . . . 135%,]- 

For ease of presentation, it is useful to ensure that the interval [1..n] is 
always an lop-interval of lop—value 0. By Definition 4.3.1, this is the case 
if and only if there is at least one k with 2 g k g n so that LCP[k] = 0. 
This in turn is the case if and only if the string S contains at least two 
different characters. Thus. we tacitly assume that S is appended to strings 
containing only one character. 

As an example, consider Figure 4.13. [LA] is a 1-interval because 
LCP[1]= —1 < 1, LCP[4+1] = 0 <1,LCP[k]21forall kwith 2 g k g 4, 
and LCP[3] = 1. Furthermore, the lop-interval 1-[1..4] represents the string 
a and €1nd2‘ces(1,4) = {3}. Similarly, the lop-interval 3-[1..2] represents 
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the string aat. By definition, the string an is not represented by an lcp- 
interval. This is because each lcp-interval [21. j] only represents the longest 
common prefix of the suffixes SSAli],SSA[,-+1],...,SSAm. So the lcp-interval 
[1.2] represents aat and not aa. 

Lemma 4.3.2 fivo lop-intervals €—[i.. j] aé m-[p..q] cannot overlap, Le., one of 
the following cases must hold: 

0 [i..j] is a subinterval op..q], i.e., p g z’ < j s q. 

o [p..q] is a subinterval of[i..j], Le., 2‘ g p < q S j. 

o [i..j] and [p..q] are disjoint, i.e., j < p o rq  < i. 

Proof Suppose to the contrary that [11. j] and [p..q] overlap, i.e., z“ < p g j < q 
(the case p < i 5 q < j is symmetric). By Definition 4.3.1, we have 

1. LCP[i] < Z 

2. LCP[p] 2 t? 

3. LCPLj + 1] < Z 

4. LCP[p] < m 

5. LCP[j + 1] 2 m 

6. LCP[q +1]  < m 

The combination of (2) and (4) yields Z 5 LCP[p] < m. while the conjunction 
of (3) and (5) yields m S LCP[j + l] < Z. In summary, we obtain e < m < Z. 
This contradiction shows the lemma. D 

Definition 4.3.3 An m-interval [p..q] is said to be embedded in an €— 
interval [2'..j] i f i t  is a subinterval of [114'] (i.e., i g p < q 5 j) and m > 2.5 The 
Z-mterval [i..j] is then called the interval enclosing [p..q]. If [i..j] encloses 
[p..q] and there is no interval embedded in [i..j] that also encloses [p..q]. 
then [p..q] is called a child interval of [i..j] (vice versa, [i..j] is the parent 
interval of [p..q]). This parent-chfld relationship constitutes a tree. which 
we call lcp-interval tree. 

For instance, continuing the example of Figure 4.13, the child intervals 
of 1-[1..4] are 3—[1..2] and 2-[3..4]. The whole lop-interval tree is shown in Fig- 
ure 4.14. The root of an lcp-interval tree is always the 0-interval [1..n]. The 
lop—interval tree of Figure 4.14 also contains singleton intervals, which are 
defined as follows. 

5Note that we cannot have both i = p and j = q because m > I. 
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[1—[1..4]] [5.5)]  [[6451] [1—[1..9]l 

Figure 4. 14: The lcp-interval tree for S = ctaataatg. 

Definition 4.3.4 An interval [k..k] is called singleton intervaL The parent 
interval of such a singleton interval is the smallest lcp-interval [i.. j] that 
contains k. 

How much space does an lcp—interval tree occupy? Clearly, there are 
exactly n singleton-intervals. hence n leaves. As each internal node of an 
lop—interval tree is branching, there can be at most n — 1 internal nodes. 
Since the representation of a node needs at most three numbers. a node 
can be represented in constant space. It is readily seen that the number 
of edges is one less than the number of nodes. Consequently, there are at 
most 2n — 2 edges because there are at most 2n —1 nodes in the lcp-interval 
tree. Since the edges are not labeled, we can surely represent each edge 
in constant space. To sum up, an lcp—interval tree requires only linear 
space. However, we will not construct this tree explicitly. As we shall see. 
it is possible to traverse this tree without constructing it. 

4.3.1 Finding child and parent intervals 
The next lemma shows how to determine child intervals. 

Lemma 4.3.5 Let [i..j] be an t-intervaL I f i l  < 2'; < < 1). are the (- 
indices in ascending order; then the child intervals of [i..j] are [Lil — 1], 
[i1..z'2 — 1], . . . , [i]... j] (note that some of them may be singleton intervals). 

Proof Let [p..q] be a non-singleton interval out of the intervals [Lil — 1]. 
[i1..i2 — 1],. . . , [iknj] and let m = LCP[RMQc(p + 1,q)]. Since none of the in- 
dices p+1, . . . , q is an Z-index, it follows from Definition 4.3.1 that LCP[k] > Z 
for all k with p+1 S k s q. Hence m > t. We claim that [p..q] is an m-interval. 
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Note that LCP[p] < e ifp = z‘ and LCP[p] = e ifp aé i. Analogously, LCP[q+1] < Z 
i f q = j  and L C P [ q + 1 ] = Z i f q 9 é j .  Wehave 

1. LCPlp] S e < m. 

2. LCP[k] _>_mforallkwithp+1 g k S q .  

3. LCP[k] = m for k = RMQc(P + 1, q) 

4. LCP[q+1] g z < m. 

By Definition 4.3. 1, [p..q] is an m-interval. To show that m—[p..q] is a child 
interval of f -  [21. j], we must prove that there is no lcp-interval embedded in 
[1,. j] that encloses [p..q]. For a proof by contradiction, suppose that the lcp- 
interval r—[lb..rb] is embedded in [21. j] and encloses [p..q]. We have m > r > f ,  
and at least one of the following cases must hold: (a) lb < p < q S rb  or (b) 
lb S p < q < rb. We prove the lemma for case (a); the other case follows 
similarly. By Definition 4.3.1, it follows that LCP[k] 2 r > Z for all k with 
l b + 1  S k g rb. In particular, LCP[p] > (Z. This, however, contradicts the fact 
that LCP[p] 5 Z. Consequently, m-[p..q] is a child interval of €-[z‘.. j]. 

Now suppose that [p..q] is a singleton interval. i.e., p = q. Obviously, at 
least one of the indices p and p + 1 must be an Z-index. That is, LCP[p] = Z 
or LCP[p + 1] = 6 (or both). One can show that there is no lcp-interval 
[lb..rb] that is embedded in [i..j] and encloses [11.1)] (the indirect proof is 
verbatim the same as above). Therefore, 6- [22. j] is the smallest lcp-interval 
that contains [p..p], that is, €—[z'.. j] is the parent interval of [p..q]. D 

As an example, we compute the child intervals of the lop—interval 0-[1..9] 
of the LCP-array from Figure 4.13. The O-indices are (in ascending order) 
5, 6, and 7. Thus, the child intervals of 0-[1..9] are [1..4], [5..5], [6..6]. and 
[7..9]. 

Exercise 4.3.6 Implement a procedure that takes an lop-interval as input 
and returns the list of its child intervals. 

We employ two auxiliary arrays PSVc and NSVLCP to explain how the 
parent interval of an lop-interval can be determined. 

Definition 4.3.7 For any index 2 g 2' S n, we define 

PSVc[i] = max{j | 1 g j < i and LCP[j] < LCP[2‘]} 

and 
NSVLCPM = min{j I ’1: < j S n + 1 and LCPU] < LCP[i]} 
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Figure 4.15: The enhanced s u ffix  array of the string S = acaaacatat with 
the arrays PSVLCP and NSVLCP. 

PSV and NSV are acronyms for previous smaller value and next smaller 
value, respectively. Given the value LCP[z‘] at index i ,  among all indices j 
so that j is  smaller than 2' and LCPLj] is smaller than LCP[2’], PSVcm is  the 
largest index. Analogously, among all indices j so that j is  larger than i 
and LCP[j] is  smaller than LCP[2'], NSVc[i] = j is the smallest index. Figure 
4.15 shows the arrays PSVc and NSVc of  the string S = acaaacatat. 

I n  this section, we will omit the subscript LCP, i.e., we will write PSV 
instead of  PSVc and NSV instead of  NSVc. 

Lemma 4.3.8 Let 2 g k g n and LCP[k] = I .  Then [PSV[k]..NSV[k] — 1] is an 
lop-interval o f  lop-value 8. 

Proof W e  have 

1. LCP[PSV[k]] < f (by the definition of PSV[k]). 

2. LCP[m] 2 Z for all m with PSV[k] + 1 S m S NSV[k] — 1. 

3. LCP[k] = 6 (note that PSV[k] + 1 g k g NSV[k] — 1). 

4 .  LCP[NSV[k]] < K (by the definition of NSV[k]). 

Consequently, [PSV[k]..NSV[k] — 1] i s  an f—interval. CI 

The following lemma explains how the parent interval parent([z‘..j]) of an 
lop-interval [22. j] 9E [Ln] can be determined with the help of the arrays LCP, 
PSV, and NSV. 
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Lemma 4.3.9 Let [i..j] 7e [1..n] be an lop—interval ([i..j] may be a singleton 
interval) with LCP[z’] = p and LCP[j + 1] = q. 

o [f p = q,  then 

- the parent interval of [i..j] is the lcp-interval [PSV[i]..NSV[i] — 1] = 
[PSV[j + 1]..NSV[j + 1] — 1], 

— the parent interval of [21. j] has lcp-value p = q, 
- i and j + 1 are consecutive p-indices of the parent interval of [i.. j]. 

o [ f p  > q,  then 

- the parent interval of [21. j] is the lcp-intewal [PSV[i].. j], 
- the parent interval of [i.. j] has lcp-value p, 
— i is the last p-index ofthe parent interval of [i..j]. 

o [ f p  < q,  then 

- the parent interval of [11. j] is the lcp-interval [i..NSV[7' + 1] — 1]. 
- the parent interval of [i.. j] has lcp-value q, 

- j + 1 is thefirst q-index ofthe parent interval of[i..j]. 

Proof W e  proceed by case analysis. 
Case p = q: According to Lemma 4.3.8, [PSV[i]..NSV[z'] — 1] is an lcp-interval 
of lcp-value p = q.  Clearly, 2' and j + 1 are p-indices of  that interval because 
LCP[z’] = p and LCP[j + 1] = p. W e  claim that PSV[i] = PSVLj + 1] and NSV[i] = 
NSVU + 1]. This is  certainly true if [i..j] is a singleton interval. If [2"..j] is  
an lcp-interval of lop-value t ,  then LCP[m] 2 Z for all m with i + 1 S m g j 
and t > p = q prove the claim. Let 1'1 < £2 < < ik be the p—indices 
of the p—interval [PSV[i]..NSV[i] — 1] in ascending order. Since 1' and j + 1 
are two consecutive p-indices, it follows that 2‘ = i ,  and j + 1 = i,“ for 
some 1 g r < k .  By  Lemma 4.3.5, [i..j] is a child interval of the p—interval 
[PSV[i]..NSV[i] — 1]. 
Case p > q: Again, by Lemma 4.3.8, [PSV[z‘]..NSV[z'] — 1] is an lcp—interval 
of lcp-value p. Obviously, i i s  a p—index of  that interval, but j + 1 is not. 
Because q < p, we have NSV[i] = j + 1. Moreover, this implies that i is  the 
last p—index of the p—interval [PSV[i].. j]. According to Lemma 4.3.5, [i.. j] is 
the last child interval of [PSV[z‘].. j]. 
Case p < q: Similar to the previous case. [I 

As an example, consider Figure 4.15 and determine parent([6..6]). Since 
p = LCP[6] = 2 > 0 = LCP[7] = q, the second case of Lemma 4.3.9 applies, 
so that parent([6..6]) = [PSV[6]..6] = [5..6]. Furthermore, the lop-interval [5..6] 
has lop-value 2, and 6 is the last (in fact, the only) 2-index of [5..6]. As 
another example, we search for parent interval of [1.2]. I n  this case p = 
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LCP[1] = —1 < 1 = LCP[3] = q, so that parent([1..2]) = [1..NSV[2 + 1] — 1] = [1..6]. 
Furthermore, the parent interval of [1.2] has lcp-value 1 and 3 is its first 
1—index. 

Corollary 4.3.10 Let [i..j] aé [1..n] be an lop-interval ([z’..j] may be a single- 
ton interval). The parent interval of [i.. j] has lcp-value max{ LCP[z’], LCP[j + 1]}. 

Proof This is a direct consequence of Lemma 4.3.9. II] 

We have seen that child intervals can be determined with RMQs, while 
parent intervals can be determined with PSV and NSV values. As a matter of 
fact. it is also possible to determine the LCA of two lcp-intervals by means 
of RMQ, PSV, and NSV. However, this is left as an exercise for the reader be- 
cause lowest common ancestors are not needed in the applications dealt 
with in this book. 

Exercise 4.3.11 Give an algorithm in pseudo-code that takes two lcp- 
intervals [i..j] and mg] as input and returns their lowest common ancestor 
in the lop-interval tree. 
Hint: If j < p, then their LCA is the lop-interval [PSV[k]..NSV[k] — 1], where 
k = RMQU + 1,20). 

In this chapter, we merely use the arrays PSV and NSV in proofs but not 
in algorithms. Nevertheless, we show here how to compute them in linear 
time. In the pseudo-code of Algorithm 4.5, the elements on the stack 
are pairs (idm, lop), where lcp = LCP[z'dx]. The procedures push (pushes an 
element onto the stack) and pop() (pops an element from the stack and 
returns that element) are the usual stack operations, while top() provides 
a pointer to the topmost element of the stack. Moreover. top().z‘dz denotes 
the first component of the topmost element of the stack. while top().lcp 
denotes the second component. 

Initially, Algorithm 4.5 pushes the pair (1, —1) consisting of the first in- 
dex and its lcp-value onto the stack, and sets PSV[1] to _L (so PSV[1] does 
not exist). The following invariant is maintained in the for—loop of the al- 
gorithm: for every element 6 on the stack, PSV[e.z‘dz] is set correctly. In 
the while-loop, the algorithm tests whether the lcp-value of the current 
index k is strictly smaller than the lcp-value of the topmost element of 
the stack. If this is the case, then the next smaller lop-value of the top- 
most element can be found at the current index k. Consequently, the 
assignment NSV[pop().z'dx] <— k pops the topmost element from the stack 
and sets the corresponding NSV-entry to k. After the while-loop. one has 
LCP[k] 2 top().lcp. If the lop—value of the topmost element of the stack is 
strictly smaller than that of the current index k, then the previous smaller 
lop-value of the current index k is the index of the topmost element. Hence 
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Algorithm 4.5 Construction of the PSV and NSV arrays. 
push((1, —1)) / * an element on the stack has the form (idz, lop) * / 
PSV[1] <— .L 
f o r k < — 2 t o n + 1 d o  

while LCP[k] < top().lcp do 
NSV[pop().idx] (— k 

if LCP[k] > top().lcp then 
PSV[k] (— t0p().idx 

else 
PSVUc] (— PSV[top().idx] 

push<<k,LCP[k1>) 

the assignment Psv[k] <— top().idx does the job. Otherwise, the equal- 
ity LCP[k] = t0p().lcp holds. In this case, the indices k and top().z'dx have 
the same previous smaller lcp-value. By the loop-invariant, PSV[top().z‘d:c] 
has been set correctly in a previous iteration of the for-loop. Therefore. 
PSV[k] (— PSV[top().z’dx] assigns the correct value to PSV[Ic]. Finally, the pair 
(k, LCP[k]) is pushed onto the stack. Because PSV[k] was set correctly, the 
loop—invariant also holds before the next execution of the for-loop. 

4.3.2 Bottom-up traversal 

In this section, we are going to describe a linear-time algorithm that tra- 
verses the lcp-interval tree in a bottom-up fashion with the help of a stack. 
We shall satisfy ourselves with the lop-interval tree without singleton in- 
tervals. However, it is not difficult to modify the algorithm so that it also 
incorporates singleton intervals. To demonstrate the full capabilities of 
the method, we first show that the lop—interval tree can be constructed in 
a bottom-up fashion. However, in applications we will not construct this 
tree explicitly. As we shall see, it is possible to traverse this tree without 
constructing it. 

Pseudo-code for the bottom-up construction of the lop—interval tree can 
be found in Algorithm 4.6. The elements on the stack are lop-intervals 
represented by quadruples (lcp, lb, rb, childList), where lcp is the lop-value 
of the interval, lb is its left boundary, r b  is its right boundary, and chils'st 
is a list of its child intervals. Furthermore, add(list, c) appends the element 
0 to the list list and returns the result. Algorithm 4.6 traverses the lcp- 
interval tree by scanning the LCP-array from left to right (or, in many 
illustrations, from top to bottom). At each index k,  the while-loop tests 
whether lop—intervals on the stack end with the right boundary k — 1, and 
new lop—intervals are detected in the penultimate if-statement. 
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Algorithm 4.6 Bottom-up traversal of the lcp-interval tree based on the 
LCP-array. ' 

lastlnterval +— J. 
push<<o,1,i,u>> 
f o r k < — 2 t o n + 1 d o  

lb (— k — 1 
while LCP[k] < top().lcp do 

top().1‘b (— k — l 
lastInterval (— p0p() 
process (lastInterval) 
lb +— lastIntervallb 
if LCP[k] S t0p().lcp then 

top().chz'ldList (— add(top().childList, lastInter'ual) 
lastInter'ual (— J. 

if LCP[k] > top().lcp then 
if lastInterval aé .L then 

push((LCP[k], lb, _L, [lastInterval])) 
lastlnterval (— J. 

else push((LCP[k], lb, i ,  [ ])) 

As an example, consider the execution of Algorithm 4.6 applied to the 
LCP-array of the string 5 = ctaataatg, shown in Figure 4.16. First, the 0- 
interval [LL] is pushed onto the stack. In the first iteration (k = 2) of the 
for-loop, the next lcp-interval 3-[1..J_] is detected because LCP[2] = 3 > 0 = 
top().lcp. Consequently, it is pushed onto the stack; see Figure 4.17. In 
the next iteration (k = 3) the while-loop detects the end of this 3-interval 
because LCP[3] = 1 < 3 = LCP[2]. Thus, its right boundary rb = k — 1 = 2 
is set, it is popped from the stack, and processed. Then, the if-statement 
inside the while-loop tests by LCP[k] g top().lcp whether this 3—interval is 
a child of the lop-interval 0-[1.._L], which now lies on top of the stack. 
If so, it would be added to the child list of the topmost interval. Since 
LCP[3] = 1 fi 0 = top().lcp, however, this is not the case. Thereafter, the 
while-loop is left and the lcp-interval 1—{1..J_] is detected and pushed onto 
the stack. Because it is the parent interval of the “dangling” 3-interva1, 
its child list must contain the interval 3—[1..2]. The remaining part of the 
LCP-array is processed analogously. 

z” 1 2 3 4 5 6 7  10 
L C P [ z ' ] — 1 3 1 2 0 0 0 4 1 — 1  

00
 

CD
 

Figure 4.16: The LCP—array of the string 5' : ctaataatg; cf. Figure 4.13. 
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Figure 4.17: Contents of the stack during the run of Algorithm 4.6. 
<0,1.9,[(1,1,4.[(3.1%[1>,<2,3,4,[1>1>,<1,7.9,[<4,7.8,[1>1>1> is the 
last interval that is processed (when k = 10). As a matter 
of fact, it is the whole lcp—interval tree corresponding to the 
LCP-array of Figure 4.16. The construction of the lcp-interval 
tree can be avoided by implementing the procedure process 
in Algorithm 4.6 accordingly: after process has processed 
lastlnterval (the parameter of the procedure), the child list 
of lastlnterval must be emptied of its contents by the assign- 
ment lastIntervalchildList (— []; cf. Algorithm 4.7. 
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The correctness of Algorithm 4.6 is a direct consequence of Theorem 
4.3.12. 

Theorem 4.3.12 Consider the for-loop of Algorithm 4.6 for some index k. 
Let top be the topmost interval on the stack and t0p_1 be the interval directly 
beneath it (note that top_1.lcp < toplcp). If LCP[k] < top.lcp, then before top 
will be popped from the stack in the while-loop, the following holds: 

1. [fLCPUc] S top_1.lcp, then top is the child interval Oftop_1. 

2. IfLCPUc] > top_1.lcp, then top is the first child interval of the lcp-interval 
with lcp-value LCP[k] that contains k. To be precise, top is the first child 
interval of [top.lb..NSV[k] — 1]. 

Proof (1) First, we show that top is embedded in tap_1. The following 
invariant is maintained in the for-loop of Algorithm 4.6: If (€1,lb1,rb1),.. . ,  
(3m, lbm, rbm) are the intervals on the stack, where top = (3",, lbm, rbm), then 
lbi S lbj and £1 < t,- for all 1 S i < j g m. Furthermore, because (t’j,lbj,rbj) 
will be popped from the stack before (6i,lbi,rb,~), it follows that rbj g Tbg. 
Thus, the @-interval [lbjnrbj] is embedded in the t’i-interval [lbiurbi]. In 
particular, top is embedded in top_1. 

If top was not the child interval of top_1, then there would be an lcp— 
interval (lcp’ , lb’ ,rb’) so that top is embedded in (lcp’,lb’,7‘b’) and (lcp’, lb’ ,rb’) 
is embedded in t0p_1. This, however, can only happen if (lcp’, lb’, rb’) is an 
interval on the stack that is above top_1. This contradiction proves the 
claim. 
(2) We have LCP[t0p.lb] = top_1.lcp < LCP[k] < top.lcp and topmb = k— 1. By the 
third case of Lemma 4.3.9, it follows that (a) the parent interval of top is 
the lcp-interval [top.lb..NSV[k] — 1], (b) the parent interval of top has lop-value 
t = LCP[k], and (c) k is the first Z-index of the parent interval of top. Thus, 
the lemma follows. E! 

In Algorithm 4.6, the lop-interval tree is traversed in a bottom-up fash- 
ion by a linear scan of the LCP-array, while storing information on a stack. 
Whenever an é-interval is processed by the generic procedure process, only 
its child intervals have to be known. These are determined solely from the 
lop-information, i.e., we do not need explicit parent-child pointers in our 
framework. It should be stressed that the algorithm exhibits strong local— 
ity of reference because of the sequential access to the LCP-array. 

It is possible to solve several problems merely by specifying the proce- 
dure process in Algorithm 4.6; an example is given below. Other applica- 
tions may require slight modifications of the algorithm; see Chapter 5. 

Let us address the problem of finding all substrings of S having at least 
p and at most q occurrences in S, where 1 g p S q. The goal is to give 
a linear-time algorithm that solves the problem. However, if p = 1 and 
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Algorithm 4.7 To find all substrings of S having at least p and at most 
q occurrences in S, where 2 g p s q, plug this implementation of the 
procedure process in Algorithm 4.6. 
process(lastlnterval) 

for eaCh (Z, i ,  j, [ ]) in lastIntervalchildList do 
i f p g  ( j — i + 1 )  and ( j — i + l ) g q t h e n  

output (lastIntervalJcp, Z, [i..j]) 
lastInterval.childList (— []  / * empty childList * / 

q = n, then the algorithm must output all substrings of S, and there are 
0(n2) substrings of S. In other words, a linear-time algorithm is impossi- 
ble if every substring is output explicitly. For this reason, the algorithm 
must use an implicit representation of the output. Here, we will give a 
solution for the case p 2 2. Exercise 4.3.15 asks you to solve the prob- 
lem for the case p = 1. As in Algorithm 4.6, the lop-interval tree of S is 
traversed in a bottom-up fashion. Suppose that the lop-interval m-[lb..rb] 
is going to be processed by the procedure process. At this point, all its 
child intervals are known. Let Z— [21. j] be one of those. Let the lcp-intervals 
m-[lb..rb] and €-[z‘.. j] represent the strings u and w, respectively; see Defi- 
nition 4.3.1. Clearly, w = no for some string 22 of length 6 — m. The key 
observation is that every substring uv’, where v’ is a non-empty prefix of 1;, 
occurs exactly ( j  — i + 1) times in S. Thus, procedure process tests whether 
1) g ( j  — z' + 1) s q is true. If so, it outputs (m +1,Z,[i..j]); meaning that 
every prefix of w = S[SA[z']..SA[i] + 3 — 1] having a length in between m + 1 
and E occurs at least p times and at most q times in 3, namely at the 
positions SA[z’], . . . ,SALj]. Algorithm 4.7 implements this approach. Note 
that its last assignment lastInterval.childList (— [ ] empties the chils'st 
of lastlnterval. This ensures that the lcp-interval tree is not constructed 
during the bottom—up traversal. 

Exercise 4.3.13 Show that Algorithm 4.6 takes only linear time and 
space. 

Exercise 4.3.14 Modify Algorithm 4.6 so that it also incorporates single- 
ton intervals. 

Exercise 4.3.15 Give a linear-time solution to the problem of finding all 
substrings of 5' having at most q 2 1 occurrences in S. 

Exercise 4.3.16 A string to is called a prefix tandem repeat of string S if 
w is a prefix of S and has the form uu for some string u. Give a linear-time 
algorithm to find the longest prefix tandem repeat of S. 
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Algorithm 4.8 BuildTopDown([i..j]) recursively constructs the subtree of 
the lop-interval tree rooted at the lop-interval [i..j], using the LCP-array 
and RMQs thereon. 

in = j  then return (.L,1Z,i,[]) / *  singleton interval * /  
childList (— [ ] 
k <— i 
m (— RMQ(i+1,j) / *  first l-index of [i..j] * /  
Z (— LCP[m] 
repeat 

subtree (— BuildTopvn([k..m —— 1]) 
add(childL’ist, subtree) 
k (— m 
if k = j then 

break 
else 

m (— RMQ(k + 1,j) 
until LCP[m] 76 Z 
subtree (— BuildTopDown([k.. 1]) 
add(childList, subtree) 
return (€,i, j, childList) 

4.3.3 Top-down traversal 
According to Lemma 4.3.5, determining the child intervals of an 3—interval 
[21. j] boils down to finding the [—indices of [12. j] in ascending order. With 
range minimum queries (see Chapter 3) on the LCP-array this is easy: 
RMQ(i + 1,j)  yields the first Z—index i1, RMQ(i1 + 1, j)  yields the second (Z- 
index i2, etc. 

We use this to construct the lop-interval tree from the LCP-array in a 
top-down fashion. The pseudo-code of the procedure BuildTopDown can 
be found in Algorithm 4.8; it takes an lop-interval [11. j] as input and 
returns the subtree of the lop-interval tree rooted at node [i..j]. Hence 
BuildTopDown([1..n]) yields the desired lop-interval tree. As in Algorithm 
4.6, nodes (i.e., lcp-intervals) in the lop-interval tree are represented by 
quadruples (lcp, lb, rb, childList), where lcp is the lcp-value of the interval 
(this value is l in singleton intervals), lb is its left boundary, rb is its right 
boundary, and childList is the list of its child intervals. 

Let us have a closer look at Algorithm 4.8. The first line contains the 
base case of the recursion: If 2' = j, then [21. j] is a singleton interval, 
and the lcp-interval tree rooted at node [i.. j] consists solely of the node 
(J_,2',i,[ ]). Otherwise, i < j and the lcp-interval [i..j] is not a singleton 
interval. Its child list is initialized to the empty list and k is set to the left 
boundary of the lop-interval [21. j]. Furthermore, m is set to the first lcp- 
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index of the lcp—interval [z j] (note that every lcp-interval has at least one 
lop-index and this can be obtained by the range minimum query RMQ(i + 
1, j)) and l is set to the lop-value of [z j]. When the repeat-untjl-loop is 
entered, the interval [k..m — 1] is the first child interval of [11. j] by Lemma 
4.3.5. Consequently, BuildTopDown is called recursively with this child 
interval and it returns the subtree of the lcp-interval tree rooted at node 
[k..m — 1]. This subtree is added to the child list. Thereafter, the current 
Z—index is stored in variable k. The loop will be executed as long as k < j 
and LCP[RMQ(k + 1,j)] = 3, Le, it will be executed as long as {k..j] is not 
a singleton interval and there is another €-index of the lop-interval [21. j], 
namely the index m = RMQ(k + 1, j). In this case, BuildTopDown is called 
recursively with the child interval [k..m— 1] (cf. Lemma 4.3.5), the returned 
subtree is added to the child list, and k is set to the current (f-index m. 

After the loop is done, there are two possibilities. 

o k = j: In this case. the recursive call BuildTopDown([k..j]) yields the 
subtree consisting of one node, viz. the singleton interval [k..j], and 
this subtree is added to the child list. 

0 k < j and LCP[RMQ(k+1,j)] aé 6: In this case, k is the last l-index of the 
lcp-interval [z j] and, by Lemma 4.3.5, [k.. j] is the last child interval 
of the lop-interval [21. j]. Thus, BuildTopDown is called recursively with 
this child interval and the returned subtree is added to the child list. 

Finally, Algorithm 4.8 returns the lop-interval tree rooted at the lcp- 
interval [i..j] in form of the quadruple (Z, 2', j, childList). 

Exercise 4.3.17 Show that Algorithm 4.8 takes only linear time and 
space. Modify the algorithm so that 

o it returns the lop-interval tree rooted at node [i..j] without singleton 
intervals, 

0 it returns the list of all child intervals of [21. j] instead of the lcp- 
interval tree rooted at node [11. j]. 

We stress that in applications it is not necessary to actually construct 
the lop-interval tree of a string. Slight modifications to Algorithm 4.8 
suffice to obtain algorithms that traverse the lop-interval tree in a top— 
down fashion without constructing it. Below, we provide two applications. 
The first one uses a depth-first traversal (similar to Algorithm 4.8), while 
the second one uses a breadth-first traversal of the lcp-interval tree. 

In our first application, for each non-singleton lop-interval €—[i.. j] we 
wish to compute a value val([i..j]) defined as follows: For a non-empty 
string 0.), let occw(S) denote the number of occurrences of w in S. Let u 
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Figure 4.18: The enhanced suffix array of S = acaaacatat with VAL array. 

be the string that is represented by the lcp-interval €-[z'.. j] (i.e., u is the 
longest common prefix of the suffixes SSAM’ SSAIiHIv . . . ,SSAm), and define 

val([i..j]) = Eoccww) 
w E u  

where w I: u means that w is a non—empty prefix of u. In words, val([z‘..j]) 
is the number of all occurrences of all non-empty prefixes of u in S. In 
Section 5.7.2, the importance of these values will become clear. As an 
example, consider the lop-interval 3-[3..4] in Figure 4.18. This lop—interval 
represents the string u = aca. The prefixes a, ac, and aca of u have 6. 2, 
and 2 occurrences in 5'. Hence val([3..4]) = 10. 

Our algorithm is based on the following lemma. 

Lemma 4.3.18 Let q-[lb..rb] be a child interval of the lcp-interval €-[z'..j]. 
Then 

val([lb..rb]) = val([1§..j]) + (Tb — lb + 1) (q — E). 

Proof Let u be the string that is represented by [z j]. This implies that 
[lb..rb] represents a string uv, where v yé a. Let u) be a substring of 5 so that 
w E uv but w i u. The key observation is that the w-interval coincides with 
the uv-interval. In other words, w occurs as often in S as uv does, namely 
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(rb — lb + 1) times. Thus, 

val([lb..rb]) E 00%(3) 
«IBM: 

= ZoccASH Z 00643) 
wEu wCuwuZu 

= val([z‘..j])+ Z (rb—lb+1) 
wEuu,w¢u 

= val([z'..j])+(rb—lb+1) 2 1 
wCuv,w(Zu 

= val([i..j]) + (Tb - l b +  1) (q — K) 

C] 

Again, consider the lcpdnterval 3-[3..4] and its parent interval 1-[1..6]; 
see Figure 4.18. We have val([l..6]) = 6 because a occurs six times in S. 
According to the previous lemma, 

val([3..4]) = val([1..6])+ (4 — 3 + 1) (3 — 1) = 6 + 2- 2 = 10 
To have constant-time access to the values, we store them in an additional 
array VAL. For an lcp-interval €-[z‘..j]. the value val([i..j]) can be stored at 
several locations. Among the options are 

1. the first e—index of [i..j]. 

2. all Z-indices of [221']. 

3. the home index of [i..j], defined by 

homefliujl) = { 3. 31:33; cu + 11 

In what follows, we will use the second possibility; see Figure 4.18 for 
an example. The uniqueness of the alternative location home([i..j]) is due 
to Strothmann [302]; cf. Exercise 4.3.19. 

The procedure Val TopDown(€— [z j], idx, val) of Algorithm 4.9 takes an lcp- 
interval [21. j] of lop—value Z, its first Hndex idz, and val = val([z'..j]) as input 
and recursively computes the VAL array of the lcp-interval tree rooted at 
[11. j]. The lcp-value e and the first lop-index idx of the lcp-interval [11. j] are 
supplied as parameters to the procedure because this avoids superfluous 
recomputations of these values. In order to get the whole VAL array, the 
procedure is called with the root interval 0-[l..n], its first O—index RMQ(2, n) 
and val = 0. In Algorithm 4.9, the value val([lb..rb]) of a child interval 
q—[lb..rb] of Z—[i..j] is computed by a generic function computeValue. Here, 
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Algorithm 4.9 ValTopDown(Z-[i..j],idz,val) recursively computes the VAL 
array of the lop-interval tree rooted at the lcp-interval €-[i..j], where idac is 
the first l-index of [Lj] and val = val([i..j]). It uses the LCP-array and RMQs 
thereon. 

k (— 2' / * lc stores the left boundary of the current child interval * / 
m (— idm / * m stores the current Z-index * / 
repeat 

VAL[m] +— val 
if k aé m —- 1 then / *  [k..m — 1] is a non—singleton child of [i..j] * /  

childldx (— RMQ(k + 1, m — 1) / *  first lop-index of [k..m — 1] * /  
q (— LCP[chlldIdz] / *  q is the lcp-value of [k..m — 1] * /  
child Val (— compute Value(€, val , q, k, m — 1) 
ValTopDo'um(q-[k..m — 1], childldz, child Val) 

k (— m / * k is left boundary of the next child interval * /  
if k = j then 

return / * there is no more non-singleton child interval * / 
else 

m (— RMQ(k + 1,j) / *  m is the next Z-index unless LCP[m] aé Z * /  
until LCP[m] 7E Z 

/ * [k..j] is the last non-singleton child interval of [21. j] * /  
/ * and m is the first lop—index of [k..j] * /  

q (—- LCP[m] / *  q is the lop-value of [k..j] * /  
child Val (— compute Value (Z, val, q, k, j) 
Val TopDown(q- [k.. j], m, child Val) 
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computeValue(€, val, q, lb, rb) = val + (Tb — lb + 1) (q — e) by Lemma 4.3.18. We 
shall see in Exercise 4.3.20 and in Section 5.7.2 that it is sufficient to 
modify compute Value to solve related problems. 

We will briefly explain Algorithm 4.9. As we have seen in Lemma 4.3.5. 
the child intervals of [i..j] are [Lil — 1], [i1..i2 — 1],...,[z’k..j], where i1 < 
i2 < < ik are the l-indices of [113‘]. In Algorithm 4.9, the variables k 
and m store the left boundary of the current child interval and the cur- 
rent l-index, respectively. Initially, k is set to the left boundary of the 
interval [21. j] and m is set to the first l—index ida: of [21. j]. Hence the first 
child interval is [k..m — 1]. The body of the repeat-until-loop stores ml 
in the VAL array at the current Z-index m and then deals with the cur- 
rent child interval [lc..m — 1] provided it is a non—singleton. In this case, 
the first lcp-index childlda: of [k..m — 1] is determined by the range min- 
imum query RMQ(k + l , m  - 1). Therefore, q = LCP[chz‘ldIdz] is the lcp- 
value of [k..m — 1]. According to Lemma 4.3.18, childVal = ual([k..m — 1]) 
is computed by computeValue(€, val,q, lb, rb) = val + (rb — lb + 1) (q — Z). The 
computation proceeds recursively with the procedure call ValTopDown(q- 
[k..m — 1], childIdz, child Val). Subsequently, k becomes the left boundary of 
the next child interval, which is m, and the next l-index of [z j] must be 
determined. If k = j . then certainly there is no more Z-index and the last 
child interval of [i.. j] is the singleton interval [j..j]. In this case, the repeat- 
until-loop is left and the procedure terminates. Otherwise, m is set to 
RMQ(k + 1, j). Now there are two possibilities: Either LCP[m] = Z. in which 
case m is the next l-index of [i..j], or LCP[m] aé If, in which case [k..j] is 
the last (non-singleton) chfld interval of [21. j] and m is the first lop-index 
of [k.. j]. In the first case, the loop is repeated, i.e., the next iteration of 
the loop sets VAL[m] to val and deals with the next child interval [k..m — 1]. 
In the second case, Algorithm 4.9 deals with the last child interval [k.. j] 
of [21.3"] as with the previous child intervals. Figure 4.18 depicts the VAL 
array of our example. 

Exercise 4.3.19 For an lcp-interval [21. j], define 

home([i..j]) = { 3 3:22:11; LCPU + 1] 

to be the home index of [21. j]. Prove that for any two lcp—intervals [21. j] and 
[p..q], the equality home([z‘..j]) = home([p..q]) implies [i..j] = [p..q]. 

Exercise 4.3.20 Modify Lemma 4.3.18 and the function compute Value in 
such a way that Algorithm 4.9 computes 

val([lb..rb]) = Z M -occ.,(S) 
wEuu 

where uu is the string represented by the lcp-interval [lb..rb]. 
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As a second application of the top-down traversal, we will briefly de- 
scribe how to find all shortest unique substrings. This is relevant in the 
design of primers for DNA sequences; for details see Section 5.6.5. 

Definition 4.3.21 A substring S[z'..j] of S is unique if it occurs exactly 
once in S. The shortest unique substring problem is to find all shortest 
unique substrings of S. 

For example, ca is the shortest unique substring of acac. If S consists 
solely of a’s, i.e., S = a", then the shortest unique substring is S itself. In 
the following, we assume that S contains at least two different characters. 

It is readily verified that a substring u of S is unique if and only if it 
is prefix of exactly one suffix of S, say of SSAlkl- In terms of lop-intervals, 
this can be rephrased as: u is unique if and only if there is exactly one 
suffix SSAlk] so that u is prefix of 85AM but not of S[SA[k]..SA[Ic] +Z— 1], where 
[-[z'..j] is the parent interval of the singleton interval [k..k]. Moreover. the 
length of all the shortest unique substrings of S is m + 1, where m is 
the smallest lop-value of all lop-intervals having a singleton child interval. 
Using this observation, the shortest unique substring problem can be 
solved by a breadth-first traversal of the lop—interval tree, using a queue. 
Initially, the queue contains only the root interval 0-[1..n]. During the 
traversal, more lop-intervals may be added to the queue. Besides the 
queue, the algorithm maintains a set M that contains all the shortest 
unique substrings detected so far (represented by their start position in 
S) and a variable min that stores their length. Initially, M is empty and 
m m  = 00. 

Suppose that Z-[i.. j] is removed from the front of the queue, i.e., it is the 
lcp-interval that is processed next during the breadth-first traversal. The 
algorithm computes all its child intervals. If a singleton child interval [k..k] 
of [11. j] is detected, then the length €+ 1 prefix of 35AM is a unique substring 
of S. Thus, if M is empty or min > € +  1, then M is set to {SA[k]} and min 
is set to 3 +  1. I f M  is not empty and min = € +  1, then SA[k] is added to M. 
Otherwise. M and min remain unchanged. If €-[z‘.. j] has no singleton child 
interval, then every child interval q—[lb..rb] of €-[z’.. j] satisfying q + 1 g min 
is added to the back of the queue. Then, the algorithm proceeds with 
the next lcp-interval at the front of the queue, as described above, until 
the queue is empty. Finally, the algorithm outputs min and M. It is not 
difficult to see that the algorithm takes time proportional to the number 
of processed lop-intervals. In the worst case, this is 0(n).  However, in 
practice only a small number of lop—intervals is processed. 

Exercise 4.3.22 Given a string S on an alphabet E, a string to 6 2+ is 
called an absent word if it is not a substring of S. Develop an algorithm 
that takes a string S as input, and outputs all shortest absent words 
(suppose that the alphabet 2 consists of the characters appearing in S). 


