
4.3 The Icp-interval tree 85

SSAIm—l] and SsAlm] because IICP(SSAIm—ll’35AM)I = clm] = e < Z +1 = IS [Li + ell. ConseQuently. S [i..i + l] is not a common prefix 0f 35AM and SSAIj]. All in all. IICP(SSA[3']7 35AM” = e. D
As in Chapter 3 , we say that an algorithm has time complexity (p(n), q(n))

if its preprocessing time is p(n) and its query i s time q(n).

Lemma 4.2.8 There is an (0(n), 0(1))-time algorithm for answering longest
common prefix queries between two suffixes o f a string S .

Proof W e must show that after a linear—time preprocessing. ||cp(S¢, Sj)| can
be computed in constant time for all positions 1 S i 5 j g n. Given string
5 of length n. one can compute the corresponding arrays SA, ISA, and LCP
in 0(n) time. Moreover, the LCP-array can be preprocessed in linear time
so that range minimum queries can be answered in constant time; see
Section 3.3. For i = j , we have ||cp(S.~,S,~)| = |S.-|. Otherwise. fori 7e j , we
have

I S. S. _ LCP[RMQc(|SA[i]+1,lSA[j])],iflSA[z’]<lSA[j]
|°P(" ,)|— LCP[RMQc(|SA[j]+1,|SA[z'])],iflSALj]<|SA[2']

This is a direct consequence of Lemma 4.2.7 because the indices 2" = lSA[z’]
and j , = ISAU] safiSfy SSAH’] = Si and SSAUI] = S j . El

Corollary 4.2.9 There is an (0(n), 0(1))—time algorithm for answering
longest common su‘fl‘ix queries between two prefixes of a string S .

Proof Observe that Ics(S[1..i], S[1..j]) = Icp(S;e_",. +1, 332’]. +1). where S'e” denotes
the reverse string of S . This, in combination with the fact that 8"" can be
obtained in linear time from S, implies that lcs(S[1..i],S[l..j]) can also be
computed in constant time af ter a linear-time preprocessing. III

4.3 The Icp-interval tree
Most concepts of this section originate from Abouelhoda et al. [1]. The
idea to use RMQs in this context stems from Fischer and Heun [108].

To see the usefulness of lcp-intervals, let us have a second look at the
enhanced suffix array of the string 5 = ctaataatg, which is replicated in
Figure 4.13. By definition 4.1.3. the a-interval i s the interval [1.4], the
aa-interval is [1.2]. and the aat-interval is also [1.2]. By contrast, there is
no substring w of 5 so that the interval [1.3] is an w-interval. The next
definition allows us to identify such intervals solely by means of the LCP—
array. The declarations LCP[1] = —1 and LCP[n + 1] = —1 ensure that the
definition also covers the interval [1..n].

86 4 Enhanced Suffix Arrays

O
1

O
J

r
-

d
v

—
«

h
O

O
O

M
i

—
t

o
o

t
—

t

aataatg
aatg
ataatg
atg

9

t9

Figure 4. 13: Enhanced suffix array and lop—intervals of S = ctaataatg.

Definition 4.3.1 An interval [Lj], 1 S i < j S n, in an LCP-array is called
an lcp-interval of lop-value I if and only if

1. LCP[z‘] < Z,

2. LCP[k] zeforaukwithi+1 S i .
3. LCP[k] = Z for at least one I: with i + 1 S k S j,

4. LCPL)’ + 1] < Z.

We will also use the shorthand €—[i.. j] for an lop-interval [i..j] of lcp-value
Z, and [i..j] will be called Z—interval. Every index k, i + l g k S j, with
LCP[k] = Z is called Z-index (or lcp—index) of [11. j]. The set of all €-indices of
an 6-interval [22. j] will be denoted by ZIndz'cesU, j). Furthermore. we will say
that the lop-interval €-[i.. j] represents the string w = S[SA[i]..SA[i] + Z — 1],
Where w is the longest common prefix of the suffixes SSAlila SSA[,-+1], . . . 135%,]-

For ease of presentation, it is useful to ensure that the interval [1..n] is
always an lop-interval of lop—value 0. By Definition 4.3.1, this is the case
if and only if there is at least one k with 2 g k g n so that LCP[k] = 0.
This in turn is the case if and only if the string S contains at least two
different characters. Thus. we tacitly assume that S is appended to strings
containing only one character.

As an example, consider Figure 4.13. [LA] is a 1-interval because
LCP[1]= —1 < 1, LCP[4+1] = 0 <1,LCP[k]21forall kwith 2 g k g 4,
and LCP[3] = 1. Furthermore, the lop-interval 1-[1..4] represents the string
a and €1nd2‘ces(1,4) = {3}. Similarly, the lop-interval 3-[1..2] represents

4.3 The lop-interval tree 87

the string aat. By definition, the string an is not represented by an lcp-
interval. This is because each lcp-interval [21. j] only represents the longest
common prefix of the suffixes SSAli],SSA[,-+1],...,SSAm. So the lcp-interval
[1.2] represents aat and not aa.

Lemma 4.3.2 fivo lop-intervals €—[i.. j] aé m-[p..q] cannot overlap, Le., one of
the following cases must hold:

0 [i..j] is a subinterval op..q], i.e., p g z’ < j s q.

o [p..q] is a subinterval of[i..j], Le., 2‘ g p < q S j.

o [i..j] and [p..q] are disjoint, i.e., j < p o rq < i.

Proof Suppose to the contrary that [11. j] and [p..q] overlap, i.e., z“ < p g j < q
(the case p < i 5 q < j is symmetric). By Definition 4.3.1, we have

1. LCP[i] < Z

2. LCP[p] 2 t?

3. LCPLj + 1] < Z

4. LCP[p] < m

5. LCP[j + 1] 2 m

6. LCP[q +1] < m

The combination of (2) and (4) yields Z 5 LCP[p] < m. while the conjunction
of (3) and (5) yields m S LCP[j + l] < Z. In summary, we obtain e < m < Z.
This contradiction shows the lemma. D

Definition 4.3.3 An m-interval [p..q] is said to be embedded in an €—
interval [2'..j] i f i t is a subinterval of [114'] (i.e., i g p < q 5 j) and m > 2.5 The
Z-mterval [i..j] is then called the interval enclosing [p..q]. If [i..j] encloses
[p..q] and there is no interval embedded in [i..j] that also encloses [p..q].
then [p..q] is called a child interval of [i..j] (vice versa, [i..j] is the parent
interval of [p..q]). This parent-chfld relationship constitutes a tree. which
we call lcp-interval tree.

For instance, continuing the example of Figure 4.13, the child intervals
of 1-[1..4] are 3—[1..2] and 2-[3..4]. The whole lop-interval tree is shown in Fig-
ure 4.14. The root of an lcp-interval tree is always the 0-interval [1..n]. The
lop—interval tree of Figure 4.14 also contains singleton intervals, which are
defined as follows.

5Note that we cannot have both i = p and j = q because m > I.

88 4 Enhanced Suffix Arrays

[1—[1..4]] [5.5)] [[6451] [1—[1..9]l

Figure 4. 14: The lcp-interval tree for S = ctaataatg.

Definition 4.3.4 An interval [k..k] is called singleton intervaL The parent
interval of such a singleton interval is the smallest lcp-interval [i.. j] that
contains k.

How much space does an lcp—interval tree occupy? Clearly, there are
exactly n singleton-intervals. hence n leaves. As each internal node of an
lop—interval tree is branching, there can be at most n — 1 internal nodes.
Since the representation of a node needs at most three numbers. a node
can be represented in constant space. It is readily seen that the number
of edges is one less than the number of nodes. Consequently, there are at
most 2n — 2 edges because there are at most 2n —1 nodes in the lcp-interval
tree. Since the edges are not labeled, we can surely represent each edge
in constant space. To sum up, an lcp—interval tree requires only linear
space. However, we will not construct this tree explicitly. As we shall see.
it is possible to traverse this tree without constructing it.

4.3.1 Finding child and parent intervals
The next lemma shows how to determine child intervals.

Lemma 4.3.5 Let [i..j] be an t-intervaL I f i l < 2'; < < 1). are the (-
indices in ascending order; then the child intervals of [i..j] are [Lil — 1],
[i1..z'2 — 1], . . . , [i]... j] (note that some of them may be singleton intervals).

Proof Let [p..q] be a non-singleton interval out of the intervals [Lil — 1].
[i1..i2 — 1],. . . , [iknj] and let m = LCP[RMQc(p + 1,q)]. Since none of the in-
dices p+1, . . . , q is an Z-index, it follows from Definition 4.3.1 that LCP[k] > Z
for all k with p+1 S k s q. Hence m > t. We claim that [p..q] is an m-interval.

4.3 The Icp-interval tree 89

Note that LCP[p] < e ifp = z‘ and LCP[p] = e ifp aé i. Analogously, LCP[q+1] < Z
i f q = j and L C P [q + 1] = Z i f q 9 é j . Wehave

1. LCPlp] S e < m.

2. LCP[k] _>_mforallkwithp+1 g k S q .

3. LCP[k] = m for k = RMQc(P + 1, q)

4. LCP[q+1] g z < m.

By Definition 4.3. 1, [p..q] is an m-interval. To show that m—[p..q] is a child
interval of f - [21. j], we must prove that there is no lcp-interval embedded in
[1,. j] that encloses [p..q]. For a proof by contradiction, suppose that the lcp-
interval r—[lb..rb] is embedded in [21. j] and encloses [p..q]. We have m > r > f ,
and at least one of the following cases must hold: (a) lb < p < q S rb or (b)
lb S p < q < rb. We prove the lemma for case (a); the other case follows
similarly. By Definition 4.3.1, it follows that LCP[k] 2 r > Z for all k with
l b + 1 S k g rb. In particular, LCP[p] > (Z. This, however, contradicts the fact
that LCP[p] 5 Z. Consequently, m-[p..q] is a child interval of €-[z‘.. j].

Now suppose that [p..q] is a singleton interval. i.e., p = q. Obviously, at
least one of the indices p and p + 1 must be an Z-index. That is, LCP[p] = Z
or LCP[p + 1] = 6 (or both). One can show that there is no lcp-interval
[lb..rb] that is embedded in [i..j] and encloses [11.1)] (the indirect proof is
verbatim the same as above). Therefore, 6- [22. j] is the smallest lcp-interval
that contains [p..p], that is, €—[z'.. j] is the parent interval of [p..q]. D

As an example, we compute the child intervals of the lop—interval 0-[1..9]
of the LCP-array from Figure 4.13. The O-indices are (in ascending order)
5, 6, and 7. Thus, the child intervals of 0-[1..9] are [1..4], [5..5], [6..6]. and
[7..9].

Exercise 4.3.6 Implement a procedure that takes an lop-interval as input
and returns the list of its child intervals.

We employ two auxiliary arrays PSVc and NSVLCP to explain how the
parent interval of an lop-interval can be determined.

Definition 4.3.7 For any index 2 g 2' S n, we define

PSVc[i] = max{j | 1 g j < i and LCP[j] < LCP[2‘]}

and
NSVLCPM = min{j I ’1: < j S n + 1 and LCPU] < LCP[i]}

90 4 Enhanced S u ffi x Arrays

I ' I S A I LCP I 35AM I PSVc I NSVLCP I
3 —1 aaacatat

aacatat
acaaacatat
acatat
at
atat
caaacatat
catat
t
tat

N

p.
..

W
O

Q
N

N
C

U
I

—
I

r
h

H
O

t
D

O
O

K
I

O
S

C
fl

-
l

k
w

N
J

D
—

I
e

H
r

—
I

O
M

O
M

v
—

I

C
O

D
-

'
K

l
l

-
‘

U
I

H
O

O
i

—
l

i
—

I

H
p

—
i

Figure 4.15: The enhanced s u ffix array of the string S = acaaacatat with
the arrays PSVLCP and NSVLCP.

PSV and NSV are acronyms for previous smaller value and next smaller
value, respectively. Given the value LCP[z‘] at index i , among all indices j
so that j is smaller than 2' and LCPLj] is smaller than LCP[2’], PSVcm is the
largest index. Analogously, among all indices j so that j is larger than i
and LCP[j] is smaller than LCP[2'], NSVc[i] = j is the smallest index. Figure
4.15 shows the arrays PSVc and NSVc of the string S = acaaacatat.

I n this section, we will omit the subscript LCP, i.e., we will write PSV
instead of PSVc and NSV instead of NSVc.

Lemma 4.3.8 Let 2 g k g n and LCP[k] = I . Then [PSV[k]..NSV[k] — 1] is an
lop-interval o f lop-value 8.

Proof W e have

1. LCP[PSV[k]] < f (by the definition of PSV[k]).

2. LCP[m] 2 Z for all m with PSV[k] + 1 S m S NSV[k] — 1.

3. LCP[k] = 6 (note that PSV[k] + 1 g k g NSV[k] — 1).

4 . LCP[NSV[k]] < K (by the definition of NSV[k]).

Consequently, [PSV[k]..NSV[k] — 1] i s an f—interval. CI

The following lemma explains how the parent interval parent([z‘..j]) of an
lop-interval [22. j] 9E [Ln] can be determined with the help of the arrays LCP,
PSV, and NSV.

4.3 The 1cp-interval tree 9 1

Lemma 4.3.9 Let [i..j] 7e [1..n] be an lop—interval ([i..j] may be a singleton
interval) with LCP[z’] = p and LCP[j + 1] = q.

o [f p = q, then

- the parent interval of [i..j] is the lcp-interval [PSV[i]..NSV[i] — 1] =
[PSV[j + 1]..NSV[j + 1] — 1],

— the parent interval of [21. j] has lcp-value p = q,
- i and j + 1 are consecutive p-indices of the parent interval of [i.. j].

o [f p > q, then

- the parent interval of [21. j] is the lcp-intewal [PSV[i].. j],
- the parent interval of [i.. j] has lcp-value p,
— i is the last p-index ofthe parent interval of [i..j].

o [f p < q, then

- the parent interval of [11. j] is the lcp-interval [i..NSV[7' + 1] — 1].
- the parent interval of [i.. j] has lcp-value q,

- j + 1 is thefirst q-index ofthe parent interval of[i..j].

Proof W e proceed by case analysis.
Case p = q: According to Lemma 4.3.8, [PSV[i]..NSV[z'] — 1] is an lcp-interval
of lcp-value p = q. Clearly, 2' and j + 1 are p-indices of that interval because
LCP[z’] = p and LCP[j + 1] = p. W e claim that PSV[i] = PSVLj + 1] and NSV[i] =
NSVU + 1]. This is certainly true if [i..j] is a singleton interval. If [2"..j] is
an lcp-interval of lop-value t , then LCP[m] 2 Z for all m with i + 1 S m g j
and t > p = q prove the claim. Let 1'1 < £2 < < ik be the p—indices
of the p—interval [PSV[i]..NSV[i] — 1] in ascending order. Since 1' and j + 1
are two consecutive p-indices, it follows that 2‘ = i , and j + 1 = i,“ for
some 1 g r < k . By Lemma 4.3.5, [i..j] is a child interval of the p—interval
[PSV[i]..NSV[i] — 1].
Case p > q: Again, by Lemma 4.3.8, [PSV[z‘]..NSV[z'] — 1] is an lcp—interval
of lcp-value p. Obviously, i i s a p—index of that interval, but j + 1 is not.
Because q < p, we have NSV[i] = j + 1. Moreover, this implies that i is the
last p—index of the p—interval [PSV[i].. j]. According to Lemma 4.3.5, [i.. j] is
the last child interval of [PSV[z‘].. j].
Case p < q: Similar to the previous case. [I

As an example, consider Figure 4.15 and determine parent([6..6]). Since
p = LCP[6] = 2 > 0 = LCP[7] = q, the second case of Lemma 4.3.9 applies,
so that parent([6..6]) = [PSV[6]..6] = [5..6]. Furthermore, the lop-interval [5..6]
has lop-value 2, and 6 is the last (in fact, the only) 2-index of [5..6]. As
another example, we search for parent interval of [1.2]. I n this case p =

92 4 Enhanced Suffix Arrays

LCP[1] = —1 < 1 = LCP[3] = q, so that parent([1..2]) = [1..NSV[2 + 1] — 1] = [1..6].
Furthermore, the parent interval of [1.2] has lcp-value 1 and 3 is its first
1—index.

Corollary 4.3.10 Let [i..j] aé [1..n] be an lop-interval ([z’..j] may be a single-
ton interval). The parent interval of [i.. j] has lcp-value max{ LCP[z’], LCP[j + 1]}.

Proof This is a direct consequence of Lemma 4.3.9. II]

We have seen that child intervals can be determined with RMQs, while
parent intervals can be determined with PSV and NSV values. As a matter of
fact. it is also possible to determine the LCA of two lcp-intervals by means
of RMQ, PSV, and NSV. However, this is left as an exercise for the reader be-
cause lowest common ancestors are not needed in the applications dealt
with in this book.

Exercise 4.3.11 Give an algorithm in pseudo-code that takes two lcp-
intervals [i..j] and mg] as input and returns their lowest common ancestor
in the lop-interval tree.
Hint: If j < p, then their LCA is the lop-interval [PSV[k]..NSV[k] — 1], where
k = RMQU + 1,20).

In this chapter, we merely use the arrays PSV and NSV in proofs but not
in algorithms. Nevertheless, we show here how to compute them in linear
time. In the pseudo-code of Algorithm 4.5, the elements on the stack
are pairs (idm, lop), where lcp = LCP[z'dx]. The procedures push (pushes an
element onto the stack) and pop() (pops an element from the stack and
returns that element) are the usual stack operations, while top() provides
a pointer to the topmost element of the stack. Moreover. top().z‘dz denotes
the first component of the topmost element of the stack. while top().lcp
denotes the second component.

Initially, Algorithm 4.5 pushes the pair (1, —1) consisting of the first in-
dex and its lcp-value onto the stack, and sets PSV[1] to _L (so PSV[1] does
not exist). The following invariant is maintained in the for—loop of the al-
gorithm: for every element 6 on the stack, PSV[e.z‘dz] is set correctly. In
the while-loop, the algorithm tests whether the lcp-value of the current
index k is strictly smaller than the lcp-value of the topmost element of
the stack. If this is the case, then the next smaller lop-value of the top-
most element can be found at the current index k. Consequently, the
assignment NSV[pop().z'dx] <— k pops the topmost element from the stack
and sets the corresponding NSV-entry to k. After the while-loop. one has
LCP[k] 2 top().lcp. If the lop—value of the topmost element of the stack is
strictly smaller than that of the current index k, then the previous smaller
lop-value of the current index k is the index of the topmost element. Hence

4.3 The lop-interval tree 93

Algorithm 4.5 Construction of the PSV and NSV arrays.
push((1, —1)) / * an element on the stack has the form (idz, lop) * /
PSV[1] <— .L
f o r k < — 2 t o n + 1 d o

while LCP[k] < top().lcp do
NSV[pop().idx] (— k

if LCP[k] > top().lcp then
PSV[k] (— t0p().idx

else
PSVUc] (— PSV[top().idx]

push<<k,LCP[k1>)

the assignment Psv[k] <— top().idx does the job. Otherwise, the equal-
ity LCP[k] = t0p().lcp holds. In this case, the indices k and top().z'dx have
the same previous smaller lcp-value. By the loop-invariant, PSV[top().z‘d:c]
has been set correctly in a previous iteration of the for-loop. Therefore.
PSV[k] (— PSV[top().z’dx] assigns the correct value to PSV[Ic]. Finally, the pair
(k, LCP[k]) is pushed onto the stack. Because PSV[k] was set correctly, the
loop—invariant also holds before the next execution of the for-loop.

4.3.2 Bottom-up traversal

In this section, we are going to describe a linear-time algorithm that tra-
verses the lcp-interval tree in a bottom-up fashion with the help of a stack.
We shall satisfy ourselves with the lop-interval tree without singleton in-
tervals. However, it is not difficult to modify the algorithm so that it also
incorporates singleton intervals. To demonstrate the full capabilities of
the method, we first show that the lop—interval tree can be constructed in
a bottom-up fashion. However, in applications we will not construct this
tree explicitly. As we shall see, it is possible to traverse this tree without
constructing it.

Pseudo-code for the bottom-up construction of the lop—interval tree can
be found in Algorithm 4.6. The elements on the stack are lop-intervals
represented by quadruples (lcp, lb, rb, childList), where lcp is the lop-value
of the interval, lb is its left boundary, r b is its right boundary, and chils'st
is a list of its child intervals. Furthermore, add(list, c) appends the element
0 to the list list and returns the result. Algorithm 4.6 traverses the lcp-
interval tree by scanning the LCP-array from left to right (or, in many
illustrations, from top to bottom). At each index k, the while-loop tests
whether lop—intervals on the stack end with the right boundary k — 1, and
new lop—intervals are detected in the penultimate if-statement.

94 4 Enhanced Suffix Arrays

Algorithm 4.6 Bottom-up traversal of the lcp-interval tree based on the
LCP-array. '

lastlnterval +— J.
push<<o,1,i,u>>
f o r k < — 2 t o n + 1 d o

lb (— k — 1
while LCP[k] < top().lcp do

top().1‘b (— k — l
lastInterval (— p0p()
process (lastInterval)
lb +— lastIntervallb
if LCP[k] S t0p().lcp then

top().chz'ldList (— add(top().childList, lastInter'ual)
lastInter'ual (— J.

if LCP[k] > top().lcp then
if lastInterval aé .L then

push((LCP[k], lb, _L, [lastInterval]))
lastlnterval (— J.

else push((LCP[k], lb, i , []))

As an example, consider the execution of Algorithm 4.6 applied to the
LCP-array of the string 5 = ctaataatg, shown in Figure 4.16. First, the 0-
interval [LL] is pushed onto the stack. In the first iteration (k = 2) of the
for-loop, the next lcp-interval 3-[1..J_] is detected because LCP[2] = 3 > 0 =
top().lcp. Consequently, it is pushed onto the stack; see Figure 4.17. In
the next iteration (k = 3) the while-loop detects the end of this 3-interval
because LCP[3] = 1 < 3 = LCP[2]. Thus, its right boundary rb = k — 1 = 2
is set, it is popped from the stack, and processed. Then, the if-statement
inside the while-loop tests by LCP[k] g top().lcp whether this 3—interval is
a child of the lop-interval 0-[1.._L], which now lies on top of the stack.
If so, it would be added to the child list of the topmost interval. Since
LCP[3] = 1 fi 0 = top().lcp, however, this is not the case. Thereafter, the
while-loop is left and the lcp-interval 1—{1..J_] is detected and pushed onto
the stack. Because it is the parent interval of the “dangling” 3-interva1,
its child list must contain the interval 3—[1..2]. The remaining part of the
LCP-array is processed analogously.

z” 1 2 3 4 5 6 7 10
L C P [z '] — 1 3 1 2 0 0 0 4 1 — 1

00

CD

Figure 4.16: The LCP—array of the string 5' : ctaataatg; cf. Figure 4.13.

4.3 The lop—interval tree 95

k contents of the stack
< 0 , 1 7 J ')

2 (3,1,J_,
A

‘
_

,

O
J

V
V

V

V
V

—

.
A

5
1
3

i—
i

.
N

—

.
.

_
.

V

_
. v

H V

3 1 2 ,),(2.3,4,)))
3,1,2,),(2,3,4,)))
3 1 2 ,),(2,3,4,))) A

A
A

‘
i

—
l

J

—
I

J
—

I

u—
tJ—

l
h-

l
“
>

1
5

A

A
A

A

0
0

4
6

3
0

1

6

, ($1.2,[1),<2,3,4,[])])])

A
A

A
A

A
A

A
A

A
A

A
A

A

O
H

O
J

>
O

O
P

O
H

N
O

H
O

l

—
I

fl
J

—
fl

r
l

—
I

J
—

t
J

—
A

J
—

t
—

I
r

—
a

i
—

A

i
—

I
—

l
—

I
—

l
—

I
—

j
—

l
—

l
—

l
—

l
—

l
—

l
—

A

A
A

10

Figure 4.17: Contents of the stack during the run of Algorithm 4.6.
<0,1.9,[(1,1,4.[(3.1%[1>,<2,3,4,[1>1>,<1,7.9,[<4,7.8,[1>1>1> is the
last interval that is processed (when k = 10). As a matter
of fact, it is the whole lcp—interval tree corresponding to the
LCP-array of Figure 4.16. The construction of the lcp-interval
tree can be avoided by implementing the procedure process
in Algorithm 4.6 accordingly: after process has processed
lastlnterval (the parameter of the procedure), the child list
of lastlnterval must be emptied of its contents by the assign-
ment lastIntervalchildList (— []; cf. Algorithm 4.7.

96 4 Enhanced Suffix Arrays

The correctness of Algorithm 4.6 is a direct consequence of Theorem
4.3.12.

Theorem 4.3.12 Consider the for-loop of Algorithm 4.6 for some index k.
Let top be the topmost interval on the stack and t0p_1 be the interval directly
beneath it (note that top_1.lcp < toplcp). If LCP[k] < top.lcp, then before top
will be popped from the stack in the while-loop, the following holds:

1. [fLCPUc] S top_1.lcp, then top is the child interval Oftop_1.

2. IfLCPUc] > top_1.lcp, then top is the first child interval of the lcp-interval
with lcp-value LCP[k] that contains k. To be precise, top is the first child
interval of [top.lb..NSV[k] — 1].

Proof (1) First, we show that top is embedded in tap_1. The following
invariant is maintained in the for-loop of Algorithm 4.6: If (€1,lb1,rb1),.. . ,
(3m, lbm, rbm) are the intervals on the stack, where top = (3",, lbm, rbm), then
lbi S lbj and £1 < t,- for all 1 S i < j g m. Furthermore, because (t’j,lbj,rbj)
will be popped from the stack before (6i,lbi,rb,~), it follows that rbj g Tbg.
Thus, the @-interval [lbjnrbj] is embedded in the t’i-interval [lbiurbi]. In
particular, top is embedded in top_1.

If top was not the child interval of top_1, then there would be an lcp—
interval (lcp’ , lb’ ,rb’) so that top is embedded in (lcp’,lb’,7‘b’) and (lcp’, lb’ ,rb’)
is embedded in t0p_1. This, however, can only happen if (lcp’, lb’, rb’) is an
interval on the stack that is above top_1. This contradiction proves the
claim.
(2) We have LCP[t0p.lb] = top_1.lcp < LCP[k] < top.lcp and topmb = k— 1. By the
third case of Lemma 4.3.9, it follows that (a) the parent interval of top is
the lcp-interval [top.lb..NSV[k] — 1], (b) the parent interval of top has lop-value
t = LCP[k], and (c) k is the first Z-index of the parent interval of top. Thus,
the lemma follows. E!

In Algorithm 4.6, the lop-interval tree is traversed in a bottom-up fash-
ion by a linear scan of the LCP-array, while storing information on a stack.
Whenever an é-interval is processed by the generic procedure process, only
its child intervals have to be known. These are determined solely from the
lop-information, i.e., we do not need explicit parent-child pointers in our
framework. It should be stressed that the algorithm exhibits strong local—
ity of reference because of the sequential access to the LCP-array.

It is possible to solve several problems merely by specifying the proce-
dure process in Algorithm 4.6; an example is given below. Other applica-
tions may require slight modifications of the algorithm; see Chapter 5.

Let us address the problem of finding all substrings of S having at least
p and at most q occurrences in S, where 1 g p S q. The goal is to give
a linear-time algorithm that solves the problem. However, if p = 1 and

4.3 The lap—interval tree 97

Algorithm 4.7 To find all substrings of S having at least p and at most
q occurrences in S, where 2 g p s q, plug this implementation of the
procedure process in Algorithm 4.6.
process(lastlnterval)

for eaCh (Z, i , j, []) in lastIntervalchildList do
i f p g (j — i + 1) and (j — i + l) g q t h e n

output (lastIntervalJcp, Z, [i..j])
lastInterval.childList (— [] / * empty childList * /

q = n, then the algorithm must output all substrings of S, and there are
0(n2) substrings of S. In other words, a linear-time algorithm is impossi-
ble if every substring is output explicitly. For this reason, the algorithm
must use an implicit representation of the output. Here, we will give a
solution for the case p 2 2. Exercise 4.3.15 asks you to solve the prob-
lem for the case p = 1. As in Algorithm 4.6, the lop-interval tree of S is
traversed in a bottom-up fashion. Suppose that the lop-interval m-[lb..rb]
is going to be processed by the procedure process. At this point, all its
child intervals are known. Let Z— [21. j] be one of those. Let the lcp-intervals
m-[lb..rb] and €-[z‘.. j] represent the strings u and w, respectively; see Defi-
nition 4.3.1. Clearly, w = no for some string 22 of length 6 — m. The key
observation is that every substring uv’, where v’ is a non-empty prefix of 1;,
occurs exactly (j — i + 1) times in S. Thus, procedure process tests whether
1) g (j — z' + 1) s q is true. If so, it outputs (m +1,Z,[i..j]); meaning that
every prefix of w = S[SA[z']..SA[i] + 3 — 1] having a length in between m + 1
and E occurs at least p times and at most q times in 3, namely at the
positions SA[z’], . . . ,SALj]. Algorithm 4.7 implements this approach. Note
that its last assignment lastInterval.childList (— [] empties the chils'st
of lastlnterval. This ensures that the lcp-interval tree is not constructed
during the bottom—up traversal.

Exercise 4.3.13 Show that Algorithm 4.6 takes only linear time and
space.

Exercise 4.3.14 Modify Algorithm 4.6 so that it also incorporates single-
ton intervals.

Exercise 4.3.15 Give a linear-time solution to the problem of finding all
substrings of 5' having at most q 2 1 occurrences in S.

Exercise 4.3.16 A string to is called a prefix tandem repeat of string S if
w is a prefix of S and has the form uu for some string u. Give a linear-time
algorithm to find the longest prefix tandem repeat of S.

98 4 Enhanced Suffix Arrays

Algorithm 4.8 BuildTopDown([i..j]) recursively constructs the subtree of
the lop-interval tree rooted at the lop-interval [i..j], using the LCP-array
and RMQs thereon.

in = j then return (.L,1Z,i,[]) / * singleton interval * /
childList (— []
k <— i
m (— RMQ(i+1,j) / * first l-index of [i..j] * /
Z (— LCP[m]
repeat

subtree (— BuildTopvn([k..m —— 1])
add(childL’ist, subtree)
k (— m
if k = j then

break
else

m (— RMQ(k + 1,j)
until LCP[m] 76 Z
subtree (— BuildTopDown([k.. 1])
add(childList, subtree)
return (€,i, j, childList)

4.3.3 Top-down traversal
According to Lemma 4.3.5, determining the child intervals of an 3—interval
[21. j] boils down to finding the [—indices of [12. j] in ascending order. With
range minimum queries (see Chapter 3) on the LCP-array this is easy:
RMQ(i + 1,j) yields the first Z—index i1, RMQ(i1 + 1, j) yields the second (Z-
index i2, etc.

We use this to construct the lop-interval tree from the LCP-array in a
top-down fashion. The pseudo-code of the procedure BuildTopDown can
be found in Algorithm 4.8; it takes an lop-interval [11. j] as input and
returns the subtree of the lop-interval tree rooted at node [i..j]. Hence
BuildTopDown([1..n]) yields the desired lop-interval tree. As in Algorithm
4.6, nodes (i.e., lcp-intervals) in the lop-interval tree are represented by
quadruples (lcp, lb, rb, childList), where lcp is the lcp-value of the interval
(this value is l in singleton intervals), lb is its left boundary, rb is its right
boundary, and childList is the list of its child intervals.

Let us have a closer look at Algorithm 4.8. The first line contains the
base case of the recursion: If 2' = j, then [21. j] is a singleton interval,
and the lcp-interval tree rooted at node [i.. j] consists solely of the node
(J_,2',i,[]). Otherwise, i < j and the lcp-interval [i..j] is not a singleton
interval. Its child list is initialized to the empty list and k is set to the left
boundary of the lop-interval [21. j]. Furthermore, m is set to the first lcp-

4.3 The Icp-interval tree 99

index of the lcp—interval [z j] (note that every lcp-interval has at least one
lop-index and this can be obtained by the range minimum query RMQ(i +
1, j)) and l is set to the lop-value of [z j]. When the repeat-untjl-loop is
entered, the interval [k..m — 1] is the first child interval of [11. j] by Lemma
4.3.5. Consequently, BuildTopDown is called recursively with this child
interval and it returns the subtree of the lcp-interval tree rooted at node
[k..m — 1]. This subtree is added to the child list. Thereafter, the current
Z—index is stored in variable k. The loop will be executed as long as k < j
and LCP[RMQ(k + 1,j)] = 3, Le, it will be executed as long as {k..j] is not
a singleton interval and there is another €-index of the lop-interval [21. j],
namely the index m = RMQ(k + 1, j). In this case, BuildTopDown is called
recursively with the child interval [k..m— 1] (cf. Lemma 4.3.5), the returned
subtree is added to the child list, and k is set to the current (f-index m.

After the loop is done, there are two possibilities.

o k = j: In this case. the recursive call BuildTopDown([k..j]) yields the
subtree consisting of one node, viz. the singleton interval [k..j], and
this subtree is added to the child list.

0 k < j and LCP[RMQ(k+1,j)] aé 6: In this case, k is the last l-index of the
lcp-interval [z j] and, by Lemma 4.3.5, [k.. j] is the last child interval
of the lop-interval [21. j]. Thus, BuildTopDown is called recursively with
this child interval and the returned subtree is added to the child list.

Finally, Algorithm 4.8 returns the lop-interval tree rooted at the lcp-
interval [i..j] in form of the quadruple (Z, 2', j, childList).

Exercise 4.3.17 Show that Algorithm 4.8 takes only linear time and
space. Modify the algorithm so that

o it returns the lop-interval tree rooted at node [i..j] without singleton
intervals,

0 it returns the list of all child intervals of [21. j] instead of the lcp-
interval tree rooted at node [11. j].

We stress that in applications it is not necessary to actually construct
the lop-interval tree of a string. Slight modifications to Algorithm 4.8
suffice to obtain algorithms that traverse the lop-interval tree in a top—
down fashion without constructing it. Below, we provide two applications.
The first one uses a depth-first traversal (similar to Algorithm 4.8), while
the second one uses a breadth-first traversal of the lcp-interval tree.

In our first application, for each non-singleton lop-interval €—[i.. j] we
wish to compute a value val([i..j]) defined as follows: For a non-empty
string 0.), let occw(S) denote the number of occurrences of w in S. Let u

100 4 Enhanced Suffix Arrays

I . I SA I LCP [35AM I VAL l

3 —1 aaacatat
aacatat
acaaacatat
acatat 1
at
atat
caaacatat
catat
t
tat

[\
D

H

W
O

Q
N

K
I

E
D

U
‘

D
—

l
fi

k

N
O

J
B

O
O

O
Q

O
Q

O
O

H
O

K
D

O
O

N
O

>
U

1
>

J
>

O
D

I
Q

H
S

r
—

I
I

—
O

N
O

N
r

—
‘

w
r

—
A

p
—

A
H

Figure 4.18: The enhanced suffix array of S = acaaacatat with VAL array.

be the string that is represented by the lcp-interval €-[z'.. j] (i.e., u is the
longest common prefix of the suffixes SSAM’ SSAIiHIv . . . ,SSAm), and define

val([i..j]) = Eoccww)
w E u

where w I: u means that w is a non—empty prefix of u. In words, val([z‘..j])
is the number of all occurrences of all non-empty prefixes of u in S. In
Section 5.7.2, the importance of these values will become clear. As an
example, consider the lop-interval 3-[3..4] in Figure 4.18. This lop—interval
represents the string u = aca. The prefixes a, ac, and aca of u have 6. 2,
and 2 occurrences in 5'. Hence val([3..4]) = 10.

Our algorithm is based on the following lemma.

Lemma 4.3.18 Let q-[lb..rb] be a child interval of the lcp-interval €-[z'..j].
Then

val([lb..rb]) = val([1§..j]) + (Tb — lb + 1) (q — E).

Proof Let u be the string that is represented by [z j]. This implies that
[lb..rb] represents a string uv, where v yé a. Let u) be a substring of 5 so that
w E uv but w i u. The key observation is that the w-interval coincides with
the uv-interval. In other words, w occurs as often in S as uv does, namely

4.3 The lop-interval tree 101

(rb — lb + 1) times. Thus,

val([lb..rb]) E 00%(3)
«IBM:

= ZoccASH Z 00643)
wEu wCuwuZu

= val([z‘..j])+ Z (rb—lb+1)
wEuu,w¢u

= val([z'..j])+(rb—lb+1) 2 1
wCuv,w(Zu

= val([i..j]) + (Tb - l b + 1) (q — K)

C]

Again, consider the lcpdnterval 3-[3..4] and its parent interval 1-[1..6];
see Figure 4.18. We have val([l..6]) = 6 because a occurs six times in S.
According to the previous lemma,

val([3..4]) = val([1..6])+ (4 — 3 + 1) (3 — 1) = 6 + 2- 2 = 10
To have constant-time access to the values, we store them in an additional
array VAL. For an lcp-interval €-[z‘..j]. the value val([i..j]) can be stored at
several locations. Among the options are

1. the first e—index of [i..j].

2. all Z-indices of [221'].

3. the home index of [i..j], defined by

homefliujl) = { 3. 31:33; cu + 11

In what follows, we will use the second possibility; see Figure 4.18 for
an example. The uniqueness of the alternative location home([i..j]) is due
to Strothmann [302]; cf. Exercise 4.3.19.

The procedure Val TopDown(€— [z j], idx, val) of Algorithm 4.9 takes an lcp-
interval [21. j] of lop—value Z, its first Hndex idz, and val = val([z'..j]) as input
and recursively computes the VAL array of the lcp-interval tree rooted at
[11. j]. The lcp-value e and the first lop-index idx of the lcp-interval [11. j] are
supplied as parameters to the procedure because this avoids superfluous
recomputations of these values. In order to get the whole VAL array, the
procedure is called with the root interval 0-[l..n], its first O—index RMQ(2, n)
and val = 0. In Algorithm 4.9, the value val([lb..rb]) of a child interval
q—[lb..rb] of Z—[i..j] is computed by a generic function computeValue. Here,

102 4 Enhanced Suffix Arrays

Algorithm 4.9 ValTopDown(Z-[i..j],idz,val) recursively computes the VAL
array of the lop-interval tree rooted at the lcp-interval €-[i..j], where idac is
the first l-index of [Lj] and val = val([i..j]). It uses the LCP-array and RMQs
thereon.

k (— 2' / * lc stores the left boundary of the current child interval * /
m (— idm / * m stores the current Z-index * /
repeat

VAL[m] +— val
if k aé m —- 1 then / * [k..m — 1] is a non—singleton child of [i..j] * /

childldx (— RMQ(k + 1, m — 1) / * first lop-index of [k..m — 1] * /
q (— LCP[chlldIdz] / * q is the lcp-value of [k..m — 1] * /
child Val (— compute Value(€, val , q, k, m — 1)
ValTopDo'um(q-[k..m — 1], childldz, child Val)

k (— m / * k is left boundary of the next child interval * /
if k = j then

return / * there is no more non-singleton child interval * /
else

m (— RMQ(k + 1,j) / * m is the next Z-index unless LCP[m] aé Z * /
until LCP[m] 7E Z

/ * [k..j] is the last non-singleton child interval of [21. j] * /
/ * and m is the first lop—index of [k..j] * /

q (—- LCP[m] / * q is the lop-value of [k..j] * /
child Val (— compute Value (Z, val, q, k, j)
Val TopDown(q- [k.. j], m, child Val)

4.3 The lop-interval tree 103

computeValue(€, val, q, lb, rb) = val + (Tb — lb + 1) (q — e) by Lemma 4.3.18. We
shall see in Exercise 4.3.20 and in Section 5.7.2 that it is sufficient to
modify compute Value to solve related problems.

We will briefly explain Algorithm 4.9. As we have seen in Lemma 4.3.5.
the child intervals of [i..j] are [Lil — 1], [i1..i2 — 1],...,[z’k..j], where i1 <
i2 < < ik are the l-indices of [113‘]. In Algorithm 4.9, the variables k
and m store the left boundary of the current child interval and the cur-
rent l-index, respectively. Initially, k is set to the left boundary of the
interval [21. j] and m is set to the first l—index ida: of [21. j]. Hence the first
child interval is [k..m — 1]. The body of the repeat-until-loop stores ml
in the VAL array at the current Z-index m and then deals with the cur-
rent child interval [lc..m — 1] provided it is a non—singleton. In this case,
the first lcp-index childlda: of [k..m — 1] is determined by the range min-
imum query RMQ(k + l , m - 1). Therefore, q = LCP[chz‘ldIdz] is the lcp-
value of [k..m — 1]. According to Lemma 4.3.18, childVal = ual([k..m — 1])
is computed by computeValue(€, val,q, lb, rb) = val + (rb — lb + 1) (q — Z). The
computation proceeds recursively with the procedure call ValTopDown(q-
[k..m — 1], childIdz, child Val). Subsequently, k becomes the left boundary of
the next child interval, which is m, and the next l-index of [z j] must be
determined. If k = j . then certainly there is no more Z-index and the last
child interval of [i.. j] is the singleton interval [j..j]. In this case, the repeat-
until-loop is left and the procedure terminates. Otherwise, m is set to
RMQ(k + 1, j). Now there are two possibilities: Either LCP[m] = Z. in which
case m is the next l-index of [i..j], or LCP[m] aé If, in which case [k..j] is
the last (non-singleton) chfld interval of [21. j] and m is the first lop-index
of [k.. j]. In the first case, the loop is repeated, i.e., the next iteration of
the loop sets VAL[m] to val and deals with the next child interval [k..m — 1].
In the second case, Algorithm 4.9 deals with the last child interval [k.. j]
of [21.3"] as with the previous child intervals. Figure 4.18 depicts the VAL
array of our example.

Exercise 4.3.19 For an lcp-interval [21. j], define

home([i..j]) = { 3 3:22:11; LCPU + 1]

to be the home index of [21. j]. Prove that for any two lcp—intervals [21. j] and
[p..q], the equality home([z‘..j]) = home([p..q]) implies [i..j] = [p..q].

Exercise 4.3.20 Modify Lemma 4.3.18 and the function compute Value in
such a way that Algorithm 4.9 computes

val([lb..rb]) = Z M -occ.,(S)
wEuu

where uu is the string represented by the lcp-interval [lb..rb].

104 4 Enhanced Suffix Arrays

As a second application of the top-down traversal, we will briefly de-
scribe how to find all shortest unique substrings. This is relevant in the
design of primers for DNA sequences; for details see Section 5.6.5.

Definition 4.3.21 A substring S[z'..j] of S is unique if it occurs exactly
once in S. The shortest unique substring problem is to find all shortest
unique substrings of S.

For example, ca is the shortest unique substring of acac. If S consists
solely of a’s, i.e., S = a", then the shortest unique substring is S itself. In
the following, we assume that S contains at least two different characters.

It is readily verified that a substring u of S is unique if and only if it
is prefix of exactly one suffix of S, say of SSAlkl- In terms of lop-intervals,
this can be rephrased as: u is unique if and only if there is exactly one
suffix SSAlk] so that u is prefix of 85AM but not of S[SA[k]..SA[Ic] +Z— 1], where
[-[z'..j] is the parent interval of the singleton interval [k..k]. Moreover. the
length of all the shortest unique substrings of S is m + 1, where m is
the smallest lop-value of all lop-intervals having a singleton child interval.
Using this observation, the shortest unique substring problem can be
solved by a breadth-first traversal of the lop—interval tree, using a queue.
Initially, the queue contains only the root interval 0-[1..n]. During the
traversal, more lop-intervals may be added to the queue. Besides the
queue, the algorithm maintains a set M that contains all the shortest
unique substrings detected so far (represented by their start position in
S) and a variable min that stores their length. Initially, M is empty and
m m = 00.

Suppose that Z-[i.. j] is removed from the front of the queue, i.e., it is the
lcp-interval that is processed next during the breadth-first traversal. The
algorithm computes all its child intervals. If a singleton child interval [k..k]
of [11. j] is detected, then the length €+ 1 prefix of 35AM is a unique substring
of S. Thus, if M is empty or min > € + 1, then M is set to {SA[k]} and min
is set to 3 + 1. I f M is not empty and min = € + 1, then SA[k] is added to M.
Otherwise. M and min remain unchanged. If €-[z‘.. j] has no singleton child
interval, then every child interval q—[lb..rb] of €-[z’.. j] satisfying q + 1 g min
is added to the back of the queue. Then, the algorithm proceeds with
the next lcp-interval at the front of the queue, as described above, until
the queue is empty. Finally, the algorithm outputs min and M. It is not
difficult to see that the algorithm takes time proportional to the number
of processed lop-intervals. In the worst case, this is 0(n). However, in
practice only a small number of lop—intervals is processed.

Exercise 4.3.22 Given a string S on an alphabet E, a string to 6 2+ is
called an absent word if it is not a substring of S. Develop an algorithm
that takes a string S as input, and outputs all shortest absent words
(suppose that the alphabet 2 consists of the characters appearing in S).

