
282 7 Compressed Full—Text Indexes

The compressed full-text index of the string S that is used throughout
this book consists of the following four components:

1. the wavelet tree of the Burrows-Wheeler transformed string of S ,

2. the sparse suffix array of S from Section 6.2. 1.

3. the compressed LCP-array as explained in Section 6.2.2,

4. the balanced parentheses sequence BPS of the LCP-array that was
introduced in Section 6.3.

We emphasize that each of the four components can be replaced with
another component that has the same functionality. For example. the
wavelet tree can be substituted by the compressed suffix array [135. 270]
sketched in Section 6.2.1 because backward search can be done with
the 1/2-function; see Exercise 7.3.3. Further alternatives are described
in [238]. However, the wavelet tree has many sophisticated properties
that make it most suitable for many applications. Alternative compressed
representations of the LCP-array are discussed in [126], among which is a
representation that is based on the array LCP’ from Section 6.3.6. There
are also alternatives to the BPS of the LCP-array, most notably the BPS,m
introduced in Section 6.1; cf. [231. 273]. We refer to [124] for an in—depth
experimental study of the various incarnations of compressed full-text
indexes.

7.2 The Burrows-Wheeler transform

The Burrows-Wheeler transform was introduced in a technical report writ-
ten by David Wheeler and Michael Burrows [48]; see the historical notes
in Adjeroh et al. [6]. In practice, the Burrows-Wheeler transformed string
tends to be easier to compress than the original string; see e.g. [48. Sec-
tion 3] and [2 15] for reasons why the transformed string compresses well.

Here we assume that the string S of length n is terminated by the sen-
tinel character $. Although this is not necessary for the Burrows-Wheeler
transform to work correctly (cf. [48]). in virtually all practical cases the file
to be compressed is terminated by a special symbol, the EOF (end of file)
character. Moreover, it allows us to use a fast suffix sorting algorithm to
compute the transformed string.

7.2.1 Encoding
The Burrows-Wheeler transform transforms a string S in three steps:

1. Form a conceptual matrix M’ whose rows are the cyclic shifts of the
string 5'.

7.2 The Burrows-Wheeler transform 283

F L
ctatatat$ $ ctatata t
tatatat$c a t$ctata t
atatat$ct a tat$cta t

. tatat$cta a tatat$c t
ctatatat$ cy—dw) atat$ctat L”) c tatatat $ L tttt$aaac

""’" tatsctata t Sctatat a °°""""
at$ctatat t at$ctat a
t$ctatata t atat$ct a
$ctatatat t atatat$ c

M’ M

Figure 7.1: The Burrows and Wheeler transform applied to the string S =
ctatatats yields the output L = tttt$aaac.

2. Compute the matrix M by sorting the rows of M’ lexicographically.

3. Output the last column L of M.

An example can be found in Figure 7.1. We next show that computing
the Burrows-Wheeler transformed string of S boils down to sorting the
suffixes of S, or more precisely, the output L of the Burrows-Wheeler
transform can be derived in linear time from the suffix array SA. To this
end, we define a string BWT and show that it coincides with L.

Definition 7.2.1 For a string S of length n having the sentinel character
at the end (and nowhere else), the string BWT[1..n] is defined by BWT[i] = $
ifSA[z'] = 1 and BWT[z‘] = S[SA[2'] — 1] ifSA[z‘] aé 1.

Obviously, the string BWT[1..n] can be derived in linear time from the
suffix array SA; see Algorithm 7.1.

Algorithm 7.1 Computing BWT from SA and the string 8'.
for i <— 1 to n do

if SA[i] = 1 then BWT[i] (— $
else BWT[i] (— S[SA[z'] — l]

If we truncate each string in the matrix M after the sentinel s , then the
truncated strings are still lexicographically ordered; see Figure 7.2. Since
these truncated strings are exactly the suffixes of S, the string BWT coin—
cides with the string L (this crucially relies on the fact that S is terminated
by s ; see Exercise 7.2.2).

284 7 Compressed Full-Text Indexes

F L F L BWT F L
$ ctatata t $ t t S t
a t$ctata t a t $ t t a t$ t
a tatscta t a tats t t atat$ t
a tatatSc t truncate a tatat$ t observe t atatats t
c tatatat s after 5 c tatatat$ $ L=BWT $ ctatatat$ $
t $ctatat a t S a a i s a
t atsctat a t at$ a a tat$ a
t atatsct a t atat$ a a tatat$ a
t atatats c t atatatS c c tatatats c

Figure 7.2: Truncate the strings (rows) after the sentinel character, and
observe that L = BWT.

i 1 2 3 4 5 6 7 8 9
L[2'] t t t t $ a a a c
L F (i) 6 7 8 9 1 2 3 4 5
F[i] $ (1 a a c t t t t

Figure 7.3: LF maps the last column L to the first column F.

Exercise 7.2.2 For a string S of length n without the sentinel character at
the end, define BWT[z'] = S[n] if SA[2'] = 1 and BWT[i] = S[SA[i] — 1] if SA[2‘] 96 1.
Find a string S (without sentinel) for which BWT 75 L.

7.2.2 Decoding
It is not obvious how the string BWT can be retransformed into the orig-
inal string 3. The key to this back-transformation is the so—called LF-
mapping.

Definition 7.2.3 Let F and L be the first and last column in the matrix
M; cf. Figure 7.1. The function LF : {1 , . . . , n} —> { 1 , . . . , n } is defined as
follows: If L[i] = c is the k-th occurrence of character 0 in L, then LF(i) = j
is the index so that F[j] is the k—th occurrence of c in F.

The function LF is called last-to-first mapping because it maps the last
column L to the first column F; see Figure 7.3 for an example. In the
following, when we regard the LF- mapping as an array, we will the use
the notation LF[i] instead of LF(z').

7.2 The Burrows—Wheeler transform 285

Algorithm 7.2 Computing LF from BWT and the C-array.
for all c E 2 do

count[c] (— C [c]
for i <— 1 to 71 do

0 (— BWT[i]
count[c] <— count[c] + 1
LF[i] (— count[c]

Next, we develop a linear—time algorithm that computes LF. To achieve
this goal, we must be able to find the k-th occurrence of a character c E)3
in F. Employing the C—array (if we consider all characters in)3 that are
smaller than c. then C [c] is the overall number of their occurrences in S),
the index of the first occurrence of character c in the array F is C[c] + 1.
Therefore, the k-th occurrence of c in F can be found at index C [c] + k.

Algorithm 7.2 shows the pseudo-code for the computation of LF. It
scans the BWT from left to right and counts how often each character
appeared already. The algorithm uses an auxiliary array count of size 0.
Initially, count[c] = C [c]. Each time character 0 appears during the scan of
BWT, c0unt[c] is incremented by one. As discussed above. if the algorithm
finds the k—th occurrence of character 0 at index i in BWT. then the k-th
occurrence of character c in F appears at index count[c] = C [c] + lc. In other
words, the index LF[z'] we are searching for is count[c].

It remains to compute the original string S from BWT and LF. Lemma
7.2.4 states the crucial property of the LF-mapping that makes this pos-
sible.

Lemma 7.2.4 The first row of the matrix M contains the suffix S" = S. If
row i, 2 g 2' g n, ofthe matrix M contains the suffix S,-, then row LF(i) ofM
contains the suffix SJ-_1.

Proof Since $ is the smallest character in E. the first row of M contains
s , which is the n-th suffix of S. Let c 95 s be a character in S, and let 2', <
i2 < < im be all the indices with BWT[ik] = c, 1 g k g m. (So ifwe would
number the m occurrences of c in L = BWT as c1, C2, . . . ,cm, then BWT[ik] =
ck.) Because the suffixes in M are ordered lexicographically, we have
55AM] < SSAlizl < ' ~ ' < SSA[im]- Obviously, this implies CSSAh‘l] < CSSAHz] < ' ‘ - <
CSSAh'ml- (With the occurrence numbers as subscripts, c1$5A[,-1] < 6235A1¢21 <

< CmSSAliml-l By definition, LF(ik) is the index so that F[LF(ik)] is the
k-th occurrence of c in F‘. Since CSSAh‘k] = SSA[ik]—19 it follows that row LF(2'k)
of M contains the suffix SSA[,-k]_1. El

Theorem 7.2.5 If L = BWT is the output of the Burrows-Wheeler transform
applied to the string S, and LF is the corresponding last-to-first mapping,
then Algorithm 7.3 computes S.

286 7 Compressed Full-Text Indexes

Algorithm 7.3 Computing the string S from BWT and LF.
S [n] (— S
j <— 1
f o r m - n — l d o w n t o 1 do

S[z'] <— BWT[j]
j <- LF(J')

Proof Initially, the algorithm assigis $ to S[n]. This is correct because
$ is the last character of S. Since $ is the smallest character in)3, row
j = 1 of the matrix M contains the suffix S" = $. Now L[1] = BWT[1] =
S[n — 1] implies that the (n — 1)-th character of S is correctly decoded in
the first iteration of the for-loop. After the assignment j +— LF(j), row j
contains the suffix Sn_1. In the second iteration of the for-loop, the (n — 2)-
th character of S is correctly decoded because LU] = BWT[j] = S [n- 2], and
so on. El

Exercise 7.2.6 Extend Algorithm 7.3 so that it also computes the suffix
array of the string S. Is it possible to overwrite the LF—array with the
suffix array? (This would save space if the LF—array is no longer needed.)

An alternative way to retransform the BWT into the original string S
uses the w-function instead of the LF—mapping. We are already familiar
with the 2/1—function: For a string of length n (without the sentinel charac-
ter $ at the end), Mi) = |SA[SA[2'] + 1] for all i with SA[2’] < n; see Definition
5.5.4. Here. we assume that the string under consideration is terminated
by $. If S is a string of length n having the sentinel character at the
end (and nowhere else), then SA[1] = n because $ is the lexicographically
smallest suffix of S. So with the previous definition of the z/x—function, the
value 111(1) is undefined. Definition 7.2.7 provides a value for 1M1) so that
11; becomes a permutation.

Definition 7.2.7 The function ¢ : {1,...,n} —> {1,...,n} is defined by
M1) = ISA[SA[2'] + 1] for all i with 2 S i g n and 112(1) = |SA[1].

The next two lemmata reveal the close relationship between the func-
tions LF and 11;.

Lemma 7.2.8 We have LF(z’) = |SA[SA[i] — 1] for al l i with SA[i] aé 1 and
LF(2‘) = 1for the indexi so that SA[z‘] = 1.

Proof If SA[2’] = 1, then BWT[i] = $. Since $ occurs at index 1 in the array F.
we have LF(2’) = 1. Now suppose that SA[z'] aé 1. According to Lemma 7.2.4,
if SA[z'] = j, then SA[LF(2')] = j — 1. So the equation SA[LF(2')] = SA[i] — 1
holds true. Thus, LF(i) = |SA[SA[z'] — 1]. E]

7.2 The Burrows-Wheeler transform 287

.. _>

String S Burgrlrfsgrf'er + Move-WFroat Huffman Code 5 a > ’ C

\ (BWT) ‘_ Coding (MTF) + Compression

Figure 7.4: The main phases of the bzip2 compression program.

Lemma 7.2.9 The flinctibns LF and 1/) are inverse of each other.

Proof We will show LF(z/)(i)) = i for all i with 1 S i g n. (The equality
1/)(LF(2')) = i similarly follows.) lfz' = 1, then 1/1(1) = ISA[1] is the index so
that SA[ISA[1]] = 1. Hence LF(1/)(1)) = 1 by Lemma 7.2.8. Fori > 1, it follows
from Lemma 7.2.8 and Definition 7.2.7 that LF(1/;(i)) = lSA[SA[1/1(i)] — 1] =
ISA SA[ISA[SA[i] + 1]] — 1] = ISA[SA[i] + 1 — 1] = i. E!

cancel

Exercise 7.2.10 This exercise makes clear that LF can be replaced with
1/1 in BWT—decoding.

0 Modify Algorithm 7.2 so that it computes the i/J—array from BWT. You
may assume that the index index_of_$, at which the character $ occurs
in the string BWT, is known (it can easily be computed during the
Burrows-Wheeler transform).

0 Modify Algorithm 7.3 so that it computes the string S from BWT,
index_of__$. and d).

0 Show how to compute the suffix array SA from BWT, index_of_$, and
1/}. Is it possible to overwrite the iii-array with the suffix array? (This
would save space if the 1/1-array is no longer needed.)

7.2.3 Data compression
The Burrows-Wheeler transform is used in many lossless data compres-
sion programs, of which the best known is Julian Seward's bzip2. Figure
7.4 shows bzip2’s main phases. (Its ancestor bzip used arithmetic cod-
ing [267] instead of Huffman coding [158]. The change was made because
of a software patent restriction.) It is possible to further use a run-length
encoder (RLE) in between move-to-front (MTF) and Huffman coding. or to
replace MTF with RLE. As a matter of fact, many more variations of the
coding scheme are possible. The reader is referred to Adjeroh et al. [6]
for a detailed introduction to the current state of knowledge about data
compression with the Burrows-Wheeler transform.

288 7 Compressed Full-Text Indexes

An application of the coding scheme from Figure 7.4 to the string S =
ctatatat$ yields the code Sc = 0111100010111. The intermediate steps are

BWT MTF Huffman

S = ctatatat$ => L = ttttSaaac => R = 300012003 => Sc = 011110000011101

We have already seen how the Burrows-Wheeler transform works, so we
now turn to the other two steps: move—to—front and Huffman coding.

Move-to-front coding
Bentley et al. [36] introduced the move-to-fl‘ont transform in 1986 but the
method was already described in 1980 by Ryabko; see [269]. The MFT
is an encoding of a string designed to improve the performance of en-
tropy encoding techniques of compression like Huffman coding [158] and
arithmetic coding [267]. The idea is that each character in the string
is replaced by its rank in a list of recently used characters. After a re-
placement, the character is moved to the front of the list of characters.
Algorithm 7.4 makes this precise.

Algorithm 7.4 Move-to-front coding of a string L E)3".
Initialize a list containing the characters from E in increasing order.
for i +— 1 to n do

R[i] <— number of characters preceding character L[i] in list
move character L[i] to the front of list

Figure 7.5 shows the application of Algorithm 7.4 to the string L =
tttt$aaac; note that ’0’ occurs more often in the resulting string R than t
or a do in L. As you can see, every run (a run is a substring of identical
characters) is replaced by a sequence of zeros (except for the first rank).
Because a Burrows-Wheeler transformed string usually has many runs.
the proportion of zero ranks after MTF has been applied is relatively high.

Pseudo-code for the decoding of the rank vector R is shown in Algorithm
7.5, and Figure 7.6 illustrates the behavior of this algorithm applied to the
rank vector R = 300012003.

Algorithm 7 .5 Move-to-front decoding of R.
Initialize a list containing the characters from 2 in increasing order.
for i <— 1 to it do

L[i] (— character at position R[i] + 1 in list (numbering elements from 1)
move character L[i] to the front of list

7.2 The Burrows—Wheeler transform 289

I I - L[i] EH]
1 Sad t 3
2 t$ac t 0
3 t$ac t 0
4 t $ a c t 0
5 t$ac $ 1
6 $tac a 2
7 a $ t c a 0
8 a $ t c a 0
9 a$tc c 3

Figure 7.5: Move-to-front coding of a string L = ttttsaaac.

n-Iaal Lli]
1 Sad 3 t
2 t $ a c 0 t
3 t$ac 0 t
4 t $ a c 0 t
5 t$ac 1 $
6 $tac 2 a
7 a$tc 0 a
8 a$tc 0 a
9 a$tc 3 c

Figure 7.6: Move-to—front decoding of R = 300012003 with 2 = {$, (1, c, t}.

290 7 Compressed Full-Text Indexes

1
5 9 1 1 9 2
1 000 001 01
00 01 10 11

Figure 7.7: Encoding R = 300012003 with a Huffman code takes 15 bits.
Encoding it with a fixed—length code would require 18 bits.

Huffman coding
Huffman coding is an encoding algorithm developed by David A. Huffman
[158], which is used for lossless data compression. The algorithm works
by creating the so-called Huffman tree and Huffman code in a bottom-up
fashion as follows:

1. Initially, there are only leaf nodes, one for each character appearing
in the string (file) to be encoded. Besides a character c. a leaf node
contains a weight. which equals the frequency of c in the string.

2. The algorithm repeatedly creates a new node whose left child has the
smallest weight, whose right child has the second smallest weight
(from that point on, these two nodes are no longer considered). and
whose weight is the sum of the weights of its children. This is done
until only one node remains, the root of the Huffman tree.

3. The codeword of a character c can be read off the path from the root
to the leaf that contains at a 0 means “follow the left child” and a 1
means “follow the right child.”

In this way, a variable-length code—a Huffman code—for encoding char-
acters from the string is obtained. As an example, consider the string
R = 300012003 on the alphabet {’0’,’ 1’,’ 2’,’ 3’} and Figure 7.7. First, leaf ’ 1’
(with weight 1/9) becomes the left child and leaf ’2’ (with weight 1/9) be—
comes the right child of a new node 121, whose weight is 2/9. Second, the
node, 121 [with weight 2/9) becomes the left child and leaf ’3’ (with weight
2/ 9) becomes the right child of another new node, 122. whose weight is 4/9.
Third, the algorithm creates the root of the Huffman tree, whose left child
is 112 and whose right child is the leaf ’0’. Figure 7.8 shows the resulting
Huffman tree and Figure 7.7 shows the codewords.

Encoding a string is very simple: just replace each character in the
string by its codeword. For instance, R = 300012003 is encoded by Sc =
011110000011101. A Huffman code is a prefix-free code, that is, the code-
word representing some particular character is never a prefix of the code-
word representing any other character. (Instead of the more accurate

7.2 The Burrows-Wheeler transform 291

Figure 7.8: Huffman tree and code of R = 300012003.

term “prefix-free code,” the term “prefix code” is standard in the litera—
ture.) This property makes decoding also simple: the character that is
represented by the initial codeword of the encoded string can be read off
the path from the root to a leaf in the Huffman tree, where 0 means “go
to the left child” and 1 means “go to the right child.” Then. the initial
codeword is removed from the encoded string and the decoding process is
repeated on the remainder of the encoded string.

For example, the decoding process for Sc = 011110000011101 starts at the
root of the Huffman tree, goes to the left (since Sc[1] = O) and then to
the right (since 342] = 1). Because the leaf ’3’ is encountered, ’3’ is the
character that is represented by the codeword 01. Then, the decoding
process continues with 1110000011101, the rest of Sc.

Huffman codes are so important because they are optimal in the sense
of Definition 7.2.11; see e.g. [61] for a proof of this fact.

Definition 7.2.11 A prefix—free binary code pc for an alphabet E and a
frequency function f : 2 —> [0.. .1] with 2562 f(c) = 1 is optimal if its
expected codeword length

21%) Ipc<c>l
CE!)

is minimum among all prefix-free binary codes for 2 and f .

7.2.4 Direct construction of the BWT

In the last few years, several algorithms have been proposed that con-
struct the BWI‘ either directly or by first constructing the suffix array and
then deriving the BWT in linear time from it; see e.g. [173,206, 254, 293].
The latter approach has a major drawback: all known SACAs require at
least n logn + n logo bits of main memory (n logn bits for the suffix array
and n log 0 bits for the string 3). If one has to deal with large datasets, it is

292 7 Compressed FuH-Text Indexes

1 2 3 4 S 6 7 8 9 10 11 12 13 14 3 5 16 17 18 19 20 21

S I m I m m I s i s m I s I s s i I i 5
type S L 5 L L L S L S L L S L S L L S S L L S

t * l t ‘ # I

,. '51, y ' r], - m p s
LMS 21 17 3 7 12 9 14

L-type suffixes 21 20 17 3 7 12 9 14 2 6 11 5 4 19 16 8 13 10 15

Stype suffixes 2 1 20 17 1 17 3 7 1 2 9 14 2 6 11 5 4 19 16 8 13 10 15
3 18 7 12 9 14

Figure 7.9: Phase II of the induced sorting algorithm.

therefore advantageous to construct the BWT more space efficiently. 1 For
example, Okanohara and Sadakane [254] have shown that the induced
sorting algorithm devised by Nong et al. [244] (the SACA from Section
4.1.2) can be modified so that it directly constructs the BWI‘ in linear
time.

In this section, we discuss (a variant of) the algorithm presented in
[254], which we call algorithm BWTbylS (direct computation of the BWT
by induced sorting). Algorithm BWTbyIS shares the same structure with
the induced sorting algorithm: it is also divided in two phases. First, we
explain how phase II of algorithm BWTbyIS works. We briefly recall phase
II of the induced sorting algorithm because this will be the basis of our
explanation. The example of Figure 7.9 will serve as an illustration [this
is the same example as in Section 4.1.2).

Phase II of the induced sorting algorithm starts with the sequence of
sorted LMS-positions He, the order corresponds to the increasing lexi-
cographic order of the suffixes starting at these LMS—positions). In the
example of Figure 7.9, this is the sequence 21,17,3,7,12,9,14.

In step 1 of phase II, the sequence of sorted LMS-positions is scanned
from right to left (hence in decreasing order) and the positions are moved
to their buckets in such a way that they appear in increasing order in the
S-type regions of the buckets; see Figure 7.9.

In step 2 of phase II, the array A is scanned from left to right. If, for an
element A[z’], the position A[z’] —1 is of type L (i.e., T[A[i] — 1] = L). then A[i] —1
is moved to the current front of its bucket. In the example of Figure 7.9,
what happens when the LMS-position 21 is encountered? The position 20
is moved to the current front of the i—bucket because T [20] = L and S[20] =
i. When position 20 is reached during the scan, position 19 is moved to
the current front of the p-bucket because T[19] = L and S [19] = p. So step

1To deal with massive data, one has to resort to extemal-memory algorithms; see e.g.
[30,99].

7.2 The Burrows-Wheeler transform 293

2 handles the transitions from LMS-positions to L—positions (LMS—>L) as
well as the transitions from L—positions to L-positions (L—>L). Within a
bucket, L—>L transitions are dealt with before LMS—>L transitions because
in a left—to—right scan the L—type region appears before the S-type region.

In step 3 of phase II, the array A is scanned from right to left. If, for
an element A[z'], the position A[i] — 1 is of type S (i.e., T[A[z'] — 1] = S), then
A[z'] — 1 is moved to the current end of its bucket. In the example of Figure
7.9, what happens when position 19 is encountered? Position 18 is moved
to the current end of the i-bucket because T[l8] = S and S[18] = i. When
position 18 is reached during the scan. position 17 is moved to the current
end of the i-bucket because T[17] = S and S[17] = i. So step 3 handles the
transitions from L—positions to S—positions (L—)S) as well as the transitions
from S-positions to S-positions (S—>S). Within a bucket, S—>S transitions
are dealt with before L—+S transitions because in a right-to-left scan the
S—type region appears before the L-type region.

Algorithm BWTbyIS does not work with LMS-positions but with LMS—
substrings. It starts with the sequence of LMS-substrings ending at the
sorted LMS—positions. In our example, this is the sequence

iipi$. issi, $imi, immmi, ismi. isi, isi

The reader may wonder why the string $imi appears in this sequence, and
not the string imi. Strictly speaking, the string S[1..3] ending at the first
LMS—position 3 is not an LMS-string. For reasons that will become clear
below, we prepend $ to this string and say that the resulting string is the
LMS-string ending at the first LMS—position of S (i.e., we interpret S as a
cyclic string).

In step 1 of phase II, the sequence of sorted LMS—substrings is scanned
from right to left. In contrast to the induced sorting algorithm, algorithm
BWTbyIS uses queues instead of the buckets. To be precise, for each char-
acter c e 2, there is one queue LMS—queue[c] (which is initially empty).
When an LMS-substring uc is encountered during the right-to-left scan,
the string u is added to the queue LMS-queue[c]. In our example, we have
LMS-queue[$] = [iipi] and LMS-queue[z'] = [iss, $im, immm, ism, is, is] (the
remaining three queues are empty).

Since positions are not available any more, transitions cannot be de-
tected by looking up the types of positions in the type array T, but they
can be inferred from the LMS—substrings. To exemplify the idea, let us
have a look on the string iipi. Because it is in LMS-queue[$], we know that
iipi$ is an LMS-string and that the position at which the character $ ap-
pears is an LMS-position. In what follows, we say that a character is of
type L (S, respectively) if the position at which it occurs is of type L (S,
respectively). So the character $ is of type S and the character preceding
it is of type L. Given a character c of type L, it is possible to infer the type

294 7 Compressed Full-Text Indexes

transition | implementation
LMS—>L remove from an LMS-queue, add to an L-queue

L-)L remove from an L-queue, add to an L—queue
L—>S remove from an L—stack. add to an S-queue
S—+S remove from an S-queue, add to an S-queue

Figure 7.10: Implementation of the four types of transitions.

of the preceding character b: if b < c, then b is of type S; otherwise it is of
type L. In our example, this yields

i i p i $
S L L L M S

Once an L—.>S transition is observed, it is clear from the type structure of
an LMS-substring that the types of the remaining characters must be S.

To simulate the transitions in steps 2 and 3 of the induced sorting algo—
rithm, algorithm BWTbyIS employs the following data structures. For for
each character c e 2, there are two queues L—queue[c] and S-queue[c] as well
as a stack L—stack[c] (all of which are initially empty). An LMS—>L (L—+L,
respectively) transition in step 2 is implemented by dequeuing an element
from an LMS-queue (L-queue. respectively) and enqueuing an element to an
L—queue. When an L—+S transition is detected in step 2, it must be post-
poned to step 3. Furthermore, since step 2 scans from left to right. but
step 3 scans from right to left, the order in which L—>S transitions are
processed must be reversed. That is why L—>S transitions are stored in
a stack, and not in a queue. In step 3, an L—)S (S—>S, respectively) tran-
sition is implemented by popping an element from an L-stack (dequeuing
an element from an S-queue, respectively) and enqueuing an element to an
S-queue. Figure 7.10 summarizes the implementation of the transitions.

Now we have all the ingredients to achieve the main goal, namely to
compute the BWI‘. In the algorithm BWTbyIS, the BWT is implemented as
an array with the bucket structure known from the induced sorting algo-
rithm. When a character c of type L is processed in step 2, its preceding
character b is moved to the current front of the c-bucket of the array BWT
(initially, the front of the c-bucket is the index C[c] + 1) and the current
front of the c-bucket is shifted by one position to the right. Analogously.
when a character c of type S is processed in step 3, its preceding character
b is moved to the current end of the c-bucket of the array BWT (initially,
the end of the c—bucket is the index C[c + 1]) and the current end of the
c-bucket is shifted by one position to the left. There is one caveat though:
when a last character of type S is reached (this is the leftmost charac-
ter of an initial LMS-substring), the preceding character is not available.
The solution to this problem relies on the fact that the position of such a

7.2 The Burrows—Wheeler transform 295

character is an LMS—position. Recall that phase II of the induced sorting
algorithm starts with sorted LMS—positions, and that the relative order
of these positions remains unchanged in step 3. In the example of Fig-
ure 7.9, the sequence of sorted LMS-positions is 21,17, 3, 7,12, 9, 14, and
the sequence of characters at the preceding positions 20,16,2,6 ,11,8,13 is
i,s,m,m,m,s,s. In the right-to-left scan of step 3, these characters must
be accessed in the reverse order, that is why they are stored on the stack
char-stack.

Algorithm 7.6 shows pseudo-code of phase II of algorithm BWTbyIS,
which runs in linear time. It needs nloga bits for all LMS-substrings of
S, n log 0 bits for the BWT, and some auxiliary data structures. The stack
char-stack can be emulated by using the S-type regions of the array BWT;
see Exercise 7.2. 13. In step 2, the algorithm merely needs the front point-
ers, the LMS-queues, the L-queues, and the L-stacks. This is the amount of
extra memory (besides the 2nloga bits) needed by the algorithm because
step 3 requires less memory.

Exercise 7.2.12 Apply Algorithm 7.6 to the example of Figure 7.9.

Exercise 7.2.13 Show how to emulate the stack char—stack in Algorithm
7 .6 by using the S-type regions of the array BWT. This saves memory.
(Note that only the L—type regions of BWT are filled in step 2, and that the
S-type regions of BWT are filled from right to left in step 3.)

We now discuss phase I of algorithm BWTbyIS. As in the induced sorting
algorithm, the lexicographic names of LMS-substrings can be computed
by an application of (a modified version of] Algorithm 7.6 to unsorted
LMS-substrings; see Exercise 7.2.17. In contrast to the induced sort—
ing algorithm. however, it is not straightforward to obtain the string 3 (the
string that is obtained from S by replacing each LMS-substn'ng with its
lem'cographic name; recall that the induced sorting algorithm proceeds re-
cursively with E unless the LMS-substrings are pairwise distinct). This is
because the positions at which the LMS-substrings start are not available.
A possible solution would be to store the LMS-substrings in an array ILN
so that |LN[k] is the k-th lexicographically smallest LMS-substring. Then,
one determines the LMS-substrings of S from left to right. For each LMS-
substring w encountered, a binary search (see Section 5.1.3) yields the
index k with |LN[k] = w. This index is the lexicographic name of w, and
it is appended to the growing string 3 However, this possible solution
has a non-linear runtime. Using algorithm engineering techniques, it is
possible to implement a space-efficient linear—time algorithm, but we will
present a conceptually simpler approach.

296 7 Compressed Full-Text Indexes

Algorithm 7.6 Phase II of the induced sorting algorithm.
initialize an empty stack char-stack
for each c in 2 do

initialize empty queues LMS—queue[c], L—queue[c], and S-queue[c]
initialize an empty stack L—stack[c]
front[c] +— C'[c] + 1 / * front of the c—bucket * /
end[c] <— C[c + 1] / * end of the c-bucket * /

/ * step 1: right-to-left scan * /
Scan the sorted sequence of LMS-substrings ending at LMS-positions
from right to left. For each LMS-substring uc encountered in the scan,
enqueue the string u to the queue LMS-queue[c].
/* IfS[i..j] = no, then T[i — 1] = L, T[z'..j — 1] = [s,...,s,L,...,L]. T[j] = s */

/ * step 2: left-to-right scan, L-type characters before S-type characters * /
for each c in 2 do / * in increasing order * /

while L-queue[c] is not empty do / * c is L-type * /
wb (— dequeue(L-queue[c]) / * b is the last character of the string * /
BWT[front[c]] (— b
front[c] (— front[c] + 1
i f b < c t h e n /*b i sS- type* /

push(L—stack[c], wb) / * store L—+S transition * /
else / * b is L-type * /

enqueue(L—queue [b], w) / * L—)L transition it /
while LMS-queue[c] is not empty do / * c is S-type * /

wb (— dequeue(LMS-queue[c]) / * b is L-type * /
push(char-stack, b) / * store character left of LMS—position * /
enqueue(L-queue[b],w) / * LMS—>L transition * /

/ * step 3: right-to-left scan, S-type characters before L—type characters * /
for each c in 2 do / * in decreasing order * /

while S-queue[c] is not empty do / * c is S-type * /
v (— dequeue(S-queue[c])
i f v z e t h e n /*vistheemptystring * /

b (— pop(char—stack) / * b precedes c in S, b is L-type * /
else

wb (— v / * decompose 1), its last character b is S—type * /
enqueue(S-queue[b], w) / * S—>S transition * /

BWT[end[c]] <— b
end[c] (— end[c] — 1

while L-stack[c] is not empty do / * c is L—type * /
wb (— p0p(L—stack[c]) / * b is S-type * /
enqueue(S-queue[b], w) / * L—>S transition * /

7.2 The Burrows-Wheeler transform 297

Phase I:

1.

2a.

2b.

In a left—to-right scan of the string 8' and the type array T, succes-
sively determine the LMS-substrings of S and incrementally build
the trie of all LMS-substrings (in which the outgoing edges of a node
are ordered alphabetically); see Figure 7. 1 1. Mark nodes at which an
LMS-substring ends.2 As shown in Section 2.5, this takes 0(n) time.
Furthermore, store the first LMS-position jl and count how many
different LMS-substrings appear in S ; let m denote this number. Ini-
tialize an array LMS—array[1..m] (in the end, this array will contain
the sequence of LMS-substrings with which phase II starts).

If all the LMS-substrings are pairwise distinct (in this case m equals
the number of LMS-substrings), then proceed as follows: In a post-
order traversal of the trie, number the marked nodes from 1 to m in
the order of their appearance. In a left-to-right scan of the string S,
walk through the trie and compute LMS-substrings as follows: Start
with the root of the trie and follow the edge whose label is the first
character S[j1] of the first LMS—substring, then the edge whose label
is the second character S[j1 + 1] and so on. until a marked node in the
trie is reached. Let k1 be its number. Note that the concatenation of
the edge labels on the path from the root to node 191 spells out the first
LMS-substring S[j1...j2] of 5'. Set LMS-armyUcl] = $S[1...j1].3 Then,
start again with the root of the trie and follow the path corresponding
to a prefix of S[j2 . . .n] until a marked node kg in the trie is reached.
Clearly, the concatenation of the edge labels on the path from the
root to node k2 spells out the second LMS-substring S[j2 . . . jg] of S.
Set LMS—army[k2] = S[j1 . . . jz]. Again, start at the root of the trie and
follow the path corresponding to a prefix of S[j3 . . . n] until a marked
node k3 in the trie is reached, set LMS-array[k3] = S U2 . . . jg], etc. Upon
termination of this process, the LMS-array contains the sequence of
LMS-substrings with which phase 11 starts.

If not all LMS-substrings are pairwise distinct, then—as in phase I
of the induced sorting algorithm—the algorithm must be applied re-
cursively to the string 3, which is obtained from S by replacing each
LMS-substring with its lexicographic name. This string 3 can be
computed as follows: Initialize an array |LN[1..m] (in the end, this will
be the inverse of the lexicographic naming, i.e., of the array LN). In
a postorder traversal of the trie, number the marked nodes from 1 to
m in the order of their appearance (see Figure 7.1 1) and simultane—
ously fill the array ILN: if the concatenation of the edge labels on the

2In fact, it suffices to mark the internal nodes at which an LMS-substring ends. For
ease of presentation, however, we also mark leaves.

3The first LMS—substring is a special case.

298 7 Compressed Full—Text Indexes

Figure 7. l 1: The trie of the LMS-substrings $, iipi$, immmi, isi, ismi, and
issi with the lexicographic names.

current path from the root to node k spells out the LMS-substring
w, then set ILN[k] = w because the lexicographic name of w is k. In
a left-to-right scan of the string 5' (starting at the first LMS-position
jl), walk through the trie and compute LMS—substrings as in step
(2a). Whenever a marked node is encountered during this process,
append its number to the string 3 (initially, :9- = 5). Then. recursively
compute the Burrows-Wheeler transform W of the string 5, Using
W , fill the LMS-array: for i from 1 to n do

$S[1...j1] if ILN[Bw—T[i]] = s LMS—array[i] = { |LN[BW—T[i“ otherwise

Exercise 7.2.14 Show that algorithm BWTbyIS runs in linear time.

Exercise 7.2.15 Apply phase I of algorithm BWTbyIS to the example from
Figure 7.9 (page 292).

Exercise 7.2. 16 Explain why the marked nodes of the trie are numbered
in a postorder traversal (and not in a preorder traversal).
Hint: Use an example in which an LMS-substring is a proper prefix of
another LMS—substring.

Exercise 7.2. 17 Modify Algorithm 7.6 in such a way that it computes the
lexicographic names of (initially unsorted) LMS-substrings.

