
7.3 Backward search 299

BWT I t c a $ (1 t c a a a a
B’B 0 O 0 1 0 O O 0 0 0 0
B“ 0 0 1 0 1 O 0 1 1 1 1
Bc 0 1 0 O O O 1 O 0 O 0
Bt 1 0 0 O 0 1 O 0 O O 0

Figure 7.12: Indicator bit vectors of BWT = tca$atcaaaa.

7.3 Backward search

Ferragina and Manzini [100] showed that it is possible to search a pattern
P = P[1..m] backwards in the suffix array SA of string S. without storing
SA. A backward search means that we first search for the P[m]-interval,
then for the P[m — 1..m]—interval. and so on, until the whole pattern P[1..m]
is found. In the computer science literature, any data structure that al-
lows to search a pattern P backwards in the (conceptual) suffix array of
a string S is called an FM—index of S. Before showing how a backward
search works, we introduce a simple FM-index consisting of the C-array
and certain indicator bit vectors. In Section 7.4 we will become acquainted
with another FM-index: the wavelet tree.

7.3.1 A simple FM-index

Definition 7.3.1 Given a string (text) T of length n on the alphabet 2.

o rankC(T,i) returns the number of occurrences of character 6 e 2 in
the prefix T[l..2’],

o selectc(T,i) returns the position of the i-th occurrences of character
0 E E in T.

It what follows, we are interested in data structures that support these
kinds of queries efficiently. Since we are mainly interested in the Burrows—
Wheeler transform of a string S, we fix T = BWT. However, the techniques
developed below work for arbitrary strings T.

The easiest method to support rankc(BWT, i) and selectC(BWT,z’) queries
is to use a many indicator bit vectors of length n. For each character c E Z],
the bit vector BC is defined by BC[2‘] = 1 if and only if BWT[2‘] = c; see Figure
7.12. Clearly, rankC(BWT,i) = rank1(Bc,i) and selectC(BWT,z‘) = select1(Bc,z').
Therefore, the problem is reduced to the problem of answering rank and
select queries on bit vectors. This can be done in constant time with a
total of no + 0(na) bits of space.

Given the ability to answer rankc(BWT,i) and selectc(BWT,i) queries in
constant time, it is possible to compute LF(2') and M2) in constant time
as well. This can be seen as follows. According to Definition 7.2.3, if

300 7 Compressed Full-Text/Indexes

F | $ a a a a a a c c t
B p | 1 1 0 0 0 0 0 1 0 1 0

F Figure 7. 13: The bit vector BF for = Saaaaaacctt.

BWT[i] = c is the k-th occurrence of character 0 in the BWT-array, then
LF(2‘) = j is the index so that PM is the k-th occurrence of c in the array
F. Furthermore, we have seen that the k-th occurrence of c in F can be
found at index 0 [c] + k.’ It follows as a consequence that

LF(i) = C[c] + rankc(BWT,i), where c = BWT[i1 (7.1)

Note that in the computer science literature. Occ(c, 2') is often used instead
of rankc(BWT, 2').

Because the 2/2—function is the inverse of the LF-mapping (Lemma 7.2.9),
it follows that if F[i] = c is the k—th occurrence of c in the array F, then
1/;(z') = j is the index so' that BWT[j] = c is the k-th occurrence of character
0 in the BWT-array. So once we know c and k‘, 100') = j can be obtained by
j = select¢(BWT, k). In fact, it is sufficient to know c because k = i — C[c].
Clearly. c can be obtained from F because F[i] = 6. However, storing F
would be a waste of memory because we can use the array 0 instead. By
doing a binary search on C, we can determine in 0(log a) time the char-
acter c with C[c] < i S'C’[c + 1], i.e., c = max{a e E | C[a] < i}. Alternatively,
c can be determined in constant time with a rank data structure on the
bit vector BF defined by BF[1] = l and, for all I with 2 S l g n, BF[l] = 1 if
and only if F[l — 1] 7e F[l]: see Figure 7.13 for an example. This is because
0 = 2[m]. where m = rank1(BF,i). All in all, we have

«11(1') = selectc(BWT,i — C[c]), Where c = E[rank1(Bp,i)] (7.2)

Note that the array 0 can be completely replaced with the bit vector BF
because C[c] = select1(BF, m) — 1.

In summary, if we use the indicator bit vectors and the bit vector BF,
then LF(i) and 1/20) can be computed in constant time, using n(1 + a) +
o(n(1+ a)) bits of space. If we use the C-array instead of the bit vector By,
then LF(2') can also be computed in constant time. but the computation
of 1N) takes 0003 a) time. In this case, alogn + no +o(na) bits of space are
required.

Exercise 7.3.2 Give a linear-time algorithm that takes the string BWT as
input and returns the bit vector BF.

7.3.2 The search algorithm
Let us return to the issue of backward search. As already mentioned, a
backward search means that we first search for the P[m]-interval. then for

7.3 Backward search 301

’i BWT 85AM i BWT 55AM

1 t $ 1 t 5
—) 2 c aaacatat$ —) 2 c aaacatatS

3 a. aacatat$ —> 3 a aacatat$
4 $ acaaacatat$ 4 $ acaaacatat$
5 a acatat$ 5 a acatat$
6 t a t $. 6 t at$

—> 7 c atat$ 7 c atat$
8 a caaacatat$ 8 a caaacatatS
9 a catat$ 9 a catat$

10 a t $ 10 a 13$
11 a tat$ 11 a tats

Figure 7.14: Searching pattern aa backwards in S = acaaacatat$. Given the
a-interval [2..7], one backward search step determines the aa-
interval [i..j] by 2' = C[a] +ranka(BWT,2 — 1) + l = 1 + 0 + l = 2

‘ andj =C’[a]+mnka(BWT,7) = 1 + 2 = 3 . '

the P[m— 1..m]-interva1, and so on, until the whole pattern P[1..m] is found.
For example, the a-interval in the suffix array of the string S = acaaacatat$
is [2..7]; see Figure 7.14. That is, SSA[2],SSA[3],...,SSA[7] are the only suf—
fixes in S that start with an a. Consequently, if we search for the suffixes
starting with aa, then SSA[2]_1, SSA[3]_1, . . . , SSA[7]_1 are the sole candidates be—
cause only these suffixes have an a at the second position. Note that these
candidates can be found in the suffix array at LF(2), LF(8), . . . ,LF(7). Out
of these candidates only those that have an a at first position belong to
the aa-interval. Because S[SA[i] -— 1] = a if and only if BWT[i] = a, the

' suffix SSAlil—l at index LF(z’) belongs to the aa-interval if and only if 35w]
belongs to the a-interval and BWT[z‘] = a. As a matter of fact. it suffices
toknowthefirst indeXpandthelast indexgwith2 S p S q 5 7and
BWT[p] = a = BWT[q]. [This is because the suffixes 85AM, SSAI3], . . . , 85AM are
ordered lexicographically and if one prepends the same character to all
of them, then the resulting strings will occur in the same leidcographic
order.) In our example. we have p = 3 and q = 5. Hence the boundaries of
the aa-interval are LF(3) = 2 and LF(5) = 3. The crucial question is how to
find p and q efficiently. Observe that a linear scan of the BWT array would
result in a bad worst-case running time. In fact, we do not have to know
p and q, as we shall see below.

Suppose in general that we know the w-interval [i.. j] of some suffix w
of P, s’ay w = P[b..m]. Next, we have to determine the cw-interval, where

302 7 Compressed Full-Text Indexes

Algorithm 7.7 Given an w-interval [21. j] and a character c, this procedure
returns the ecu-interval if it exists; otherwise. it retums .L.
backwardSearch(c, [13])

2'4— C[c] + rankc(BWT,i — 1) + 1
j 4— C[c] + rank¢(BWT,j)

if 2' S j then
return interval [12. j]

elle
return J.

c = P[b — 1]. Assume for a moment that the cw-interval is non-empty, i.e.,
cw is a substring of 3. Let p and q be the smallest and largest index with
i S p 5 q S j and BWT[p] = c : BWT[q]. As discussed above, the cw-interval
is the interval [LF(p)..LF(q)]. According to Equation 7.1 (page 300) we
have

ll ‘VC[c] + rankc(BWT, p)
C[c] + rankc(BWT,p ~— 1) + l

= C[c] + rankc(BWT,z' — 1) + 1

”(11)

where the last equality follows from the fact that p is the index of the first
occurrence of c in BWT[z'. .j]. Analogously,

‘LF(q) = C[c]+rankc(BWT,q)
_—.. C[c]+rankc(BWT,j)

because q is the index of the last occurrence of c in BWT[z‘. j]. We conclude
that the eta-interval [C[c] + rank c,(BWT i — 1) + 1. .C[c] + rankc(BWT, j)] can
be determined without knowing p and q. Pseudo- code for one backward
search step can be found in Algorithm 7. 7. In the preceding discussion.
we assumed that the (aw-interval is non-empty. What happens if it is
empty? Then, rankc(BWT,i —— 1) = rankc(BWT, j). This implies that C[c] +
rankc(BWT,i — 1) + 1 > C[c] + rankc(BWT, j) and thus Algorithm 7.7 returns
the undefined value J_.

Pseudo—code for searching the whole pattern P is given in Algorithm 7.8.

Exercise 7.3.3 Show that backward search can be accomplished in
0(m log n) time, solely based‘on the ¢-array of 5’ (cf. Definition 7.2.7).

' 7.4 Wavelet trees 303

Algorithm 7.8 Given a pattern P, this procedure returns the P-interval if
it exists; otherwise, it returns _L.
backwardSearch(P)

z' <— 1
j (— n
k (— m
w h fl e i g j a n d k g l d o

c (— P[k] .
H— C[c] + rank¢(BWT,i —- 1) + 1
j +— C'[c] + rankc(BWT, j)
k <— k —- 1

if i g j then
return interval [21. j],

else i
return _L

7.4 Wavelet trees

The wavelet tree was introduced by Grossi et al. [134]. In a very general
sense, a wavelet tree is a binary tree“ that has exactly a many leaves and
there is a bijection between the set of leaves and E (i.e., each of the leaves
corresponds to a distinct character from the alphabet 23). Moreover, every
internal node 11 stores a bit vector B” equipped with rank and select data
structures.

The conceptually easiest way to introduce wavelet trees goes as follows.
We say that an interval [l..r] is an alphabet interval if it is a subinterval
of [La], where a = IE]. For an alphabet interval [l..r], the string BWTlM
is obtained from the Burrows-Wheeler transformed string BWT of S by
deleting all characters in BWT that do not belong to the subalphabet E[l..r]
of E[1..o]. As an example, consider the string BWT = tca$atcaaaa and the
alphabet interval [1..2]. The string BWTM] is obtained from tca$atcaaaa
by deleting the characters c and t. Thus, BWT”"2] = a$aaaaa. Each node
v of the tree corresponds to a string BWT[""], where [l..r] is an alphabet
interval. The root of the tree corresponds to the string BWT = BWT[1""]. If
I = r, then 12 has no children. Otherwise, v has two children: its left child
2);, corresponds to the string BWTV‘“J and its right child 03 corresponds
to the string BWTlm+1"’], where m = [L‘s-U. In this case, 12 stores a bit
vector, denoted by B” or BIL-'1, whose i-th entry is 0 if the i-th character
in BWTM belongs to the subalphabet EIl..m] and 1 if it belongs to the
subalphabet 2[m + 1..r]. To put it differently, an entry in the bit vector
is 0 if the corresponding character belongs to the left subtree and 1 if it

‘That is. every node in the tree is either a leaf or has exactly two children.

