BWT	t	C	a	Ş	a	t	C	a	a	a	a
$B^{\$}$											
B^a	0	0	1	0	1	0	0	1	1	1	1
B^c	0	1	0	0	0	0	1	0	0	0	0
B^t	1	0	0	0	0	1	0	0	0	0	0

Figure 7.12: Indicator bit vectors of BWT = tca \$atcaaaa.

7.3 Backward search

Ferragina and Manzini [100] showed that it is possible to search a pattern P = P[1..m] backwards in the suffix array SA of string S, without storing SA. A backward search means that we first search for the P[m]-interval, then for the P[m-1..m]-interval, and so on, until the whole pattern P[1..m] is found. In the computer science literature, any data structure that allows to search a pattern P backwards in the (conceptual) suffix array of a string S is called an *FM*-index of S. Before showing how a backward search works, we introduce a simple FM-index consisting of the C-array and certain indicator bit vectors. In Section 7.4 we will become acquainted with another FM-index: the wavelet tree.

7.3.1 A simple FM-index

Definition 7.3.1 Given a string (text) T of length n on the alphabet Σ ,

- $rank_c(T,i)$ returns the number of occurrences of character $c \in \Sigma$ in the prefix T[1..i],
- $select_c(T, i)$ returns the position of the *i*-th occurrences of character $c \in \Sigma$ in *T*.

It what follows, we are interested in data structures that support these kinds of queries efficiently. Since we are mainly interested in the Burrows-Wheeler transform of a string S, we fix T = BWT. However, the techniques developed below work for arbitrary strings T.

The easiest method to support $rank_c(\mathsf{BWT}, i)$ and $select_c(\mathsf{BWT}, i)$ queries is to use σ many indicator bit vectors of length n. For each character $c \in \Sigma$, the bit vector B^c is defined by $B^c[i] = 1$ if and only if $\mathsf{BWT}[i] = c$; see Figure 7.12. Clearly, $rank_c(\mathsf{BWT}, i) = rank_1(B^c, i)$ and $select_c(\mathsf{BWT}, i) = select_1(B^c, i)$. Therefore, the problem is reduced to the problem of answering rank and select queries on bit vectors. This can be done in constant time with a total of $n\sigma + o(n\sigma)$ bits of space.

Given the ability to answer $rank_c(\mathsf{BWT}, i)$ and $select_c(\mathsf{BWT}, i)$ queries in constant time, it is possible to compute LF(i) and $\psi(i)$ in constant time as well. This can be seen as follows. According to Definition 7.2.3, if

Figure 7.13: The bit vector B_F for F = \$aaaaaaacctt.

BWT[i] = c is the *k*-th occurrence of character *c* in the BWT-array, then LF(i) = j is the index so that F[j] is the *k*-th occurrence of *c* in the array *F*. Furthermore, we have seen that the *k*-th occurrence of *c* in *F* can be found at index C[c] + k. It follows as a consequence that

$$LF(i) = C[c] + rank_c(\mathsf{BWT}, i), \text{ where } c = \mathsf{BWT}[i]$$
 (7.1)

Note that in the computer science literature, Occ(c, i) is often used instead of $rank_c(BWT, i)$.

Because the ψ -function is the inverse of the LF-mapping (Lemma 7.2.9), it follows that if F[i] = c is the k-th occurrence of c in the array F, then $\psi(i) = j$ is the index so that $\mathsf{BWT}[j] = c$ is the k-th occurrence of character c in the BWT-array. So once we know c and k, $\psi(i) = j$ can be obtained by $j = select_c(\mathsf{BWT}, k)$. In fact, it is sufficient to know c because k = i - C[c]. Clearly, c can be obtained from F because F[i] = c. However, storing Fwould be a waste of memory because we can use the array C instead. By doing a binary search on C, we can determine in $O(\log \sigma)$ time the character c with $C[c] < i \le C[c+1]$, i.e., $c = \max\{a \in \Sigma \mid C[a] < i\}$. Alternatively, c can be determined in constant time with a rank data structure on the bit vector B_F defined by $B_F[1] = 1$ and, for all l with $2 \le l \le n$, $B_F[l] = 1$ if and only if $F[l-1] \ne F[l]$; see Figure 7.13 for an example. This is because $c = \Sigma[m]$, where $m = rank_1(B_F, i)$. All in all, we have

$$\psi(i) = select_c(\mathsf{BWT}, i - C[c]), \text{ where } c = \Sigma[rank_1(B_F, i)]$$
 (7.2)

Note that the array *C* can be completely replaced with the bit vector B_F because $C[c] = select_1(B_F, m) - 1$.

In summary, if we use the indicator bit vectors and the bit vector B_F , then LF(i) and $\psi(i)$ can be computed in constant time, using $n(1 + \sigma) + o(n(1 + \sigma))$ bits of space. If we use the *C*-array instead of the bit vector B_F , then LF(i) can also be computed in constant time, but the computation of $\psi(i)$ takes $O(\log \sigma)$ time. In this case, $\sigma \log n + n\sigma + o(n\sigma)$ bits of space are required.

Exercise 7.3.2 Give a linear-time algorithm that takes the string BWT as input and returns the bit vector B_F .

7.3.2 The search algorithm

Let us return to the issue of backward search. As already mentioned, a backward search means that we first search for the P[m]-interval, then for

i	BWT	$S_{SA[i]}$	reaction	1
1	t	\$] [1
$\rightarrow 2$	С	aaacatat\$	1	$\rightarrow 2$
3	a	aacatat\$	1	$\rightarrow 3$
4	\$	a caa a cat at \$	1	4
5	a	a catat\$]	5
6	t	at\$		6
$\rightarrow 7$	с	atat\$] [7
8	a	caaacatat\$] [8
9	a	catat\$		9
10	a	t\$		10
11	a	tat\$	1601.0	11

i	BWT	$S_{SA[i]}$
1	t	\$
$\rightarrow 2$	c	aaacatat\$
$\rightarrow 3$	a	aacatat\$
4	\$	a caa a cat at \$
5	a	a catat\$
6	t	at\$
7	с	atat\$
8	a	caaa catat\$
9	a	catat\$
10	a	<i>t</i> \$
11	a	tat\$

Figure 7.14: Searching pattern *aa* backwards in S = acaaacatat\$. Given the *a*-interval [2..7], one backward search step determines the *aa*-interval [*i*..*j*] by $i = C[a] + rank_a(BWT, 2 - 1) + 1 = 1 + 0 + 1 = 2$ and $j = C[a] + rank_a(BWT, 7) = 1 + 2 = 3$.

the P[m-1..m]-interval, and so on, until the whole pattern P[1..m] is found. For example, the *a*-interval in the suffix array of the string S = acaaacatat\$ is [2..7]; see Figure 7.14. That is, $S_{SA[2]}, S_{SA[3]}, \ldots, S_{SA[7]}$ are the only suffixes in S that start with an a. Consequently, if we search for the suffixes starting with *aa*, then $S_{SA[2]-1}, S_{SA[3]-1}, \ldots, S_{SA[7]-1}$ are the sole candidates because only these suffixes have an *a* at the second position. Note that these candidates can be found in the suffix array at $LF(2), LF(3), \ldots, LF(7)$. Out of these candidates only those that have an a at first position belong to the *aa*-interval. Because S[SA[i] - 1] = a if and only if BWT[i] = a, the suffix $S_{SA[i]-1}$ at index LF(i) belongs to the *aa*-interval if and only if $S_{SA[i]}$ belongs to the *a*-interval and BWT[i] = a. As a matter of fact, it suffices to know the first index p and the last index q with $2 \le p \le q \le 7$ and BWT[p] = a = BWT[q]. (This is because the suffixes $S_{SA[2]}, S_{SA[3]}, \dots, S_{SA[7]}$ are ordered lexicographically and if one prepends the same character to all of them, then the resulting strings will occur in the same lexicographic order.) In our example, we have p = 3 and q = 5. Hence the boundaries of the *aa*-interval are LF(3) = 2 and LF(5) = 3. The crucial question is how to find p and q efficiently. Observe that a linear scan of the BWT array would result in a bad worst-case running time. In fact, we do not have to know p and q, as we shall see below.

Suppose in general that we know the ω -interval [i..j] of some suffix ω of P, say $\omega = P[b..m]$. Next, we have to determine the $c\omega$ -interval, where

Algorithm 7.7 Given an ω -interval [i..j] and a character c, this procedure returns the $c\omega$ -interval if it exists; otherwise, it returns \bot .

```
\begin{array}{l} backwardSearch(c,[i..j])\\ i \leftarrow C[c] + rank_c(\mathsf{BWT},i-1) + 1\\ j \leftarrow C[c] + rank_c(\mathsf{BWT},j)\\ \textbf{if } i \leq j \textbf{ then}\\ \textbf{return interval } [i..j]\\ \textbf{else}\\ \textbf{return } \bot \end{array}
```

c = P[b-1]. Assume for a moment that the $c\omega$ -interval is non-empty, i.e., $c\omega$ is a substring of S. Let p and q be the smallest and largest index with $i \le p \le q \le j$ and $\mathsf{BWT}[p] = c = \mathsf{BWT}[q]$. As discussed above, the $c\omega$ -interval is the interval [LF(p)..LF(q)]. According to Equation 7.1 (page 300) we have

 $LF(p) = C[c] + rank_c(\mathsf{BWT}, p)$ = $C[c] + rank_c(\mathsf{BWT}, p-1) + 1$ = $C[c] + rank_c(\mathsf{BWT}, i-1) + 1$

where the last equality follows from the fact that p is the index of the first occurrence of c in BWT[i..j]. Analogously,

 $LF(q) = C[c] + rank_c(\mathsf{BWT}, q)$ = $C[c] + rank_c(\mathsf{BWT}, j)$

because q is the index of the last occurrence of c in $\mathsf{BWT}[i..j]$. We conclude that the cw-interval $[C[c] + rank_c(\mathsf{BWT}, i-1) + 1..C[c] + rank_c(\mathsf{BWT}, j)]$ can be determined without knowing p and q. Pseudo-code for one backward search step can be found in Algorithm 7.7. In the preceding discussion, we assumed that the cw-interval is non-empty. What happens if it is empty? Then, $rank_c(\mathsf{BWT}, i-1) = rank_c(\mathsf{BWT}, j)$. This implies that $C[c] + rank_c(\mathsf{BWT}, i-1) + 1 > C[c] + rank_c(\mathsf{BWT}, j)$ and thus Algorithm 7.7 returns the undefined value \bot .

Pseudo-code for searching the whole pattern P is given in Algorithm 7.8.

Exercise 7.3.3 Show that backward search can be accomplished in $O(m \log n)$ time, solely based on the ψ -array of *S* (cf. Definition 7.2.7).

Algorithm 7.8 Given a pattern *P*, this procedure returns the *P*-interval if it exists; otherwise, it returns \perp .

```
\begin{array}{l} backwardSearch(P)\\ i \leftarrow 1\\ j \leftarrow n\\ k \leftarrow m\\ \hline \textbf{while } i \leq j \text{ and } k \geq 1 \text{ do}\\ c \leftarrow P[k]\\ i \leftarrow C[c] + rank_c(\mathsf{BWT}, i - 1) + 1\\ j \leftarrow C[c] + rank_c(\mathsf{BWT}, j)\\ k \leftarrow k - 1\\ \hline \textbf{if } i \leq j \text{ then}\\ \textbf{return interval } [i..j]\\ \hline \textbf{else}\\ \textbf{return } \bot \end{array}
```

7.4 Wavelet trees

The *wavelet tree* was introduced by Grossi et al. [134]. In a very general sense, a wavelet tree is a binary tree⁴ that has exactly σ many leaves and there is a bijection between the set of leaves and Σ (i.e., each of the leaves corresponds to a distinct character from the alphabet Σ). Moreover, every internal node v stores a bit vector B^v equipped with rank and select data structures.

The conceptually easiest way to introduce wavelet trees goes as follows. We say that an interval [l..r] is an alphabet interval if it is a subinterval of $[1.\sigma]$, where $\sigma = |\Sigma|$. For an alphabet interval [l..r], the string BWT^[l..r] is obtained from the Burrows-Wheeler transformed string BWT of S by deleting all characters in BWT that do not belong to the subalphabet $\Sigma[l..r]$ of $\Sigma[1.\sigma]$. As an example, consider the string BWT = tca\$atcaaaa and the alphabet interval [1..2]. The string $BWT^{[1..2]}$ is obtained from tca \$ atcaaaaby deleting the characters c and t. Thus, $BWT^{[1.2]} = a \$ aaaaa$. Each node v of the tree corresponds to a string $BWT^{[l.r]}$, where [l..r] is an alphabet interval. The root of the tree corresponds to the string $BWT = BWT^{[1.\sigma]}$. If l = r, then v has no children. Otherwise, v has two children: its left child v_L corresponds to the string BWT^[l.m] and its right child v_R corresponds to the string BWT^[m+1.r], where $m = \lfloor \frac{l+r}{2} \rfloor$. In this case, v stores a bit vector, denoted by B^v or $B^{[l..r]}$, whose *i*-th entry is 0 if the *i*-th character in BWT^[l.,r] belongs to the subalphabet $\Sigma[l..m]$ and 1 if it belongs to the subalphabet $\Sigma[m + 1..r]$. To put it differently, an entry in the bit vector is 0 if the corresponding character belongs to the left subtree and 1 if it

⁴That is, every node in the tree is either a leaf or has exactly two children.