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BWT I t c a $ (1 t c a a a a 
B’B 0 O 0 1 0 O O 0 0 0 0 
B“ 0 0 1 0 1 O 0 1 1 1 1 
Bc 0 1 0 O O O 1 O 0 O 0 
Bt 1 0 0 O 0 1 O 0 O O 0 

Figure 7.12: Indicator bit vectors of BWT = tca$atcaaaa. 

7.3 Backward search 

Ferragina and Manzini [100] showed that it is possible to search a pattern 
P = P[1..m] backwards in the suffix array SA of string S. without storing 
SA. A backward search means that we first search for the P[m]-interval, 
then for the P[m — 1..m]—interval. and so on, until the whole pattern P[1..m] 
is found. In the computer science literature, any data structure that al- 
lows to search a pattern P backwards in the (conceptual) suffix array of 
a string S is called an FM—index of S. Before showing how a backward 
search works, we introduce a simple FM-index consisting of the C-array 
and certain indicator bit vectors. In Section 7.4 we will become acquainted 
with another FM-index: the wavelet tree. 

7.3.1 A simple FM-index 

Definition 7.3.1 Given a string (text) T of length n on the alphabet 2. 

o rankC(T,i) returns the number of occurrences of character 6 e 2 in 
the prefix T[l..2’], 

o selectc(T,i) returns the position of the i-th occurrences of character 
0 E E in T. 

It what follows, we are interested in data structures that support these 
kinds of queries efficiently. Since we are mainly interested in the Burrows— 
Wheeler transform of a string S, we fix T = BWT. However, the techniques 
developed below work for arbitrary strings T. 

The easiest method to support rankc(BWT, i) and selectC(BWT,z’) queries 
is to use a many indicator bit vectors of length n. For each character c E Z], 
the bit vector BC is defined by BC[2‘] = 1 if and only if BWT[2‘] = c; see Figure 
7.12. Clearly, rankC(BWT,i) = rank1(Bc,i) and selectC(BWT,z‘) = select1(Bc,z'). 
Therefore, the problem is reduced to the problem of answering rank and 
select queries on bit vectors. This can be done in constant time with a 
total of no + 0(na) bits of space. 

Given the ability to answer rankc(BWT,i) and selectc(BWT,i) queries in 
constant time, it is possible to compute LF(2') and M2) in constant time 
as well. This can be seen as follows. According to Definition 7.2.3, if 
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F | $  a a a a a a c  c t  
B p | 1 1 0 0 0 0 0 1 0 1 0  

F Figure 7.  13: The bit vector BF for = Saaaaaacctt. 

BWT[i] = c is the k-th occurrence of character 0 in the BWT-array, then 
LF(2‘) = j is the index so that PM is the k-th occurrence of c in the array 
F. Furthermore, we have seen that the k-th occurrence of c in F can be 
found at index 0 [c] + k.’ It follows as a consequence that 

LF(i) = C[c] + rankc(BWT,i), where c = BWT[i1 (7.1) 

Note that in the computer science literature. Occ(c, 2') is often used instead 
of rankc(BWT, 2'). 

Because the 2/2—function is the inverse of the LF-mapping (Lemma 7.2.9), 
it follows that if F[i] = c is the k—th occurrence of c in the array F, then 
1/;(z') = j is the index so' that BWT[j] = c is the k-th occurrence of character 
0 in the BWT-array. So once we know c and k‘, 100') = j can be obtained by 
j = select¢(BWT, k). In fact, it is sufficient to know c because k = i — C[c]. 
Clearly. c can be obtained from F because F[i] = 6. However, storing F 
would be a waste of memory because we can use the array 0 instead. By 
doing a binary search on C, we can determine in 0(log a) time the char- 
acter c with C[c] < i S'C’[c + 1], i.e., c = max{a e E | C[a] < i}. Alternatively, 
c can be determined in constant time with a rank data structure on the 
bit vector BF defined by BF[1] = l and, for all I with 2 S l g n,  BF[l] = 1 if 
and only if F[l — 1] 7e F[l]: see Figure 7.13 for an example. This is because 
0 = 2[m]. where m = rank1(BF,i). All in all, we have 

«11(1') = selectc(BWT,i — C[c]), Where c = E[rank1(Bp,i)] (7.2) 

Note that the array 0 can be completely replaced with the bit vector BF 
because C[c] = select1(BF, m) — 1. 

In summary, if we use the indicator bit vectors and the bit vector BF, 
then LF(i) and 1/20) can be computed in constant time, using n(1 + a) + 
o(n(1+ a)) bits of space. If we use the C-array instead of the bit vector By, 
then LF(2') can also be computed in constant time. but the computation 
of 1N) takes 0003 a) time. In this case, alogn + no +o(na) bits of space are 
required. 

Exercise 7.3.2 Give a linear-time algorithm that takes the string BWT as 
input and returns the bit vector BF. 

7.3.2 The search algorithm 
Let us return to the issue of backward search. As already mentioned, a 
backward search means that we first search for the P[m]-interval. then for 
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’i BWT 85AM i BWT 55AM 

1 t $ 1 t 5 
—) 2 c aaacatat$ —) 2 c aaacatatS 

3 a. aacatat$ —> 3 a aacatat$ 
4 $ acaaacatat$ 4 $ acaaacatat$ 
5 a acatat$ 5 a acatat$ 
6 t a t $ .  6 t at$ 

—> 7 c atat$ 7 c atat$ 
8 a caaacatat$ 8 a caaacatatS 
9 a catat$ 9 a catat$ 

10 a t $  10 a 13$ 
11 a tat$ 11 a tats 

Figure 7.14: Searching pattern aa backwards in S = acaaacatat$. Given the 
a-interval [2..7], one backward search step determines the aa- 
interval [i..j] by 2' = C[a] +ranka(BWT,2 — 1) + l = 1 + 0 +  l = 2 

‘ andj =C’[a]+mnka(BWT,7) = 1 + 2 = 3 .  ' 

the P[m— 1..m]-interva1, and so on, until the whole pattern P[1..m] is found. 
For example, the a-interval in the suffix array of the string S = acaaacatat$ 
is [2..7]; see Figure 7.14. That is, SSA[2],SSA[3],...,SSA[7] are the only suf— 
fixes in S that start with an a. Consequently, if we search for the suffixes 
starting with aa, then SSA[2]_1, SSA[3]_1, . . . , SSA[7]_1 are the sole candidates be— 
cause only these suffixes have an a at the second position. Note that these 
candidates can be found in the suffix array at LF(2), LF(8), . . . ,LF(7). Out 
of these candidates only those that have an a at first position belong to 
the aa-interval. Because S[SA[i] -— 1] = a if and only if BWT[i] = a, the 

' suffix SSAlil—l at index LF(z’) belongs to the aa-interval if and only if 35w] 
belongs to the a-interval and BWT[z‘] = a. As a matter of fact. it suffices 
toknowthefirst indeXpandthelast indexgwith2 S p S  q 5 7and 
BWT[p] = a = BWT[q]. [This is because the suffixes 85AM, SSAI3], . . . , 85AM are 
ordered lexicographically and if one prepends the same character to all 
of them, then the resulting strings will occur in the same leidcographic 
order.) In our example. we have p = 3 and q = 5. Hence the boundaries of 
the aa-interval are LF(3) = 2 and LF(5) = 3. The crucial question is how to 
find p and q efficiently. Observe that a linear scan of the BWT array would 
result in a bad worst-case running time. In fact, we do not have to know 
p and q, as we shall see below. 

Suppose in general that we know the w-interval [i.. j] of some suffix w 
of P, s’ay w = P[b..m]. Next, we have to determine the cw-interval, where 
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Algorithm 7.7 Given an w-interval [21. j] and a character c, this procedure 
returns the ecu-interval if it exists; otherwise. it retums .L. 
backwardSearch(c, [13]) 

2'4— C[c] + rankc(BWT,i — 1) + 1  
j 4— C[c] + rank¢(BWT,j) 

if 2' S j then 
return interval [12. j] 

elle 
return J. 

c = P[b — 1]. Assume for a moment that the cw-interval is non-empty, i.e., 
cw is a substring of 3. Let p and q be the smallest and largest index with 
i S p 5 q S j and BWT[p] = c : BWT[q]. As discussed above, the cw-interval 
is the interval [LF(p)..LF(q)]. According to Equation 7.1 (page 300) we 
have 

ll ‘VC[c] + rankc(BWT, p) 
C[c] + rankc(BWT,p ~— 1) + l 

= C[c] + rankc(BWT,z' — 1) + 1 

”(11) 

where the last equality follows from the fact that p is the index of the first 
occurrence of c in BWT[z'. .j]. Analogously, 

‘LF(q) = C[c]+rankc(BWT,q) 
_—.. C[c]+rankc(BWT,j) 

because q is the index of the last occurrence of c in BWT[z‘. j]. We conclude 
that the eta-interval [C[c] + rank c,(BWT i — 1) + 1. .C[c] + rankc(BWT, j)] can 
be determined without knowing p and q. Pseudo- code for one backward 
search step can be found in Algorithm 7. 7. In the preceding discussion. 
we assumed that the (aw-interval is non-empty. What happens if it is 
empty? Then, rankc(BWT,i —— 1) = rankc(BWT, j). This implies that C[c] + 
rankc(BWT,i — 1) + 1 > C[c] + rankc(BWT, j) and thus Algorithm 7.7 returns 
the undefined value J_. 

Pseudo—code for searching the whole pattern P is given in Algorithm 7.8. 

Exercise 7.3.3 Show that backward search can be accomplished in 
0(m log n) time, solely based‘on the ¢-array of 5’ (cf. Definition 7.2.7). 
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Algorithm 7.8 Given a pattern P, this procedure returns the P-interval if 
it exists; otherwise, it returns _L. 
backwardSearch(P) 

z' <— 1 
j (— n 
k (— m 
w h fl e i g j a n d k g l d o  

c (— P[k] . 
H— C[c] + rank¢(BWT,i —- 1) + 1 
j +— C'[c] + rankc(BWT, j) 
k <— k —- 1 

if i g j then 
return interval [21. j], 

else i 
return _L 

7.4 Wavelet trees 

The wavelet tree was introduced by Grossi et al. [134]. In a very general 
sense, a wavelet tree is a binary tree“ that has exactly a many leaves and 
there is a bijection between the set of leaves and E (i.e., each of the leaves 
corresponds to a distinct character from the alphabet 23). Moreover, every 
internal node 11 stores a bit vector B” equipped with rank and select data 
structures. 

The conceptually easiest way to introduce wavelet trees goes as follows. 
We say that an interval [l..r] is an alphabet interval if it is a subinterval 
of [La], where a = IE]. For an alphabet interval [l..r], the string BWTlM 
is obtained from the Burrows-Wheeler transformed string BWT of S by 
deleting all characters in BWT that do not belong to the subalphabet E[l..r] 
of E[1..o]. As an example, consider the string BWT = tca$atcaaaa and the 
alphabet interval [1..2]. The string BWTM] is obtained from tca$atcaaaa 
by deleting the characters c and t. Thus, BWT”"2] = a$aaaaa. Each node 
v of the tree corresponds to a string BWT[""], where [l..r] is an alphabet 
interval. The root of the tree corresponds to the string BWT = BWT[1""]. If 
I = r, then 12 has no children. Otherwise, v has two children: its left child 
2);, corresponds to the string BWTV‘“J and its right child 03 corresponds 
to the string BWTlm+1"’], where m = [L‘s-U. In this case, 12 stores a bit 
vector, denoted by B” or BIL-'1, whose i-th entry is 0 if the i-th character 
in BWTM belongs to the subalphabet EIl..m] and 1 if it belongs to the 
subalphabet 2[m + 1..r]. To put it differently, an entry in the bit vector 
is 0 if the corresponding character belongs to the left subtree and 1 if it 

‘That is. every node in the tree is either a leaf or has exactly two children. 


