
374 7 Compressed Full-Text Indexes 

Stoye’s diploma thesis on affix trees (the English translation appeared 
in [300]). and Maafi [208] showed that affix trees can be constructed on- 
line in linear time. Basically, the affix tree of a string 5 comprises both the 
suffix tree of S (supporting forward search) and the suffix tree of the re- 
verse string Sm’ (supporting backward search). Strothmann [302] showed 
that affix arrays have the same functionality as affix trees, but they re- 
quire less than half the space. An affix array combines the suffix arrays 
of S and 3"”, but it is a complex data structure because the interplay 
between the two suffix arrays is rather difficult to implement. A reimple— 
mentation of affix arrays is described in [221]. 

7.9 Approximate string matching 

Approximate string matching is the technique of finding substrings of a 
long string S (or a collection of strings) that match a pattern P approx- 
imately (rather than exactly). Approximate search algorithms are abun- 
dant and there is a vast literature on the topic. We shall not discuss 
this field in detail. but instead refer to the overview article [236]. Here, 
we consider solely the case in which 5' is fixed and many on-line queries 
of the form “Where are all approximate matches of P in S?” must be 
answered efficiently. A prime example in bioinformatics is short read 
mapping. High-throughput sequencing (or next-generation sequencing) 
technologies produce billions of bases in a single run. In their short read 
mapping primer [312], Trapnell and Salzberg write: 

One of the challenges presented by the new sequencing tech- 
nology is the so-called ‘read mapping’ problem. Sequencing 
machines made by lllumina of San Diego, Applied Biosystems 
(AB1) of Carlsbad. California, and Helicos of Cambridge, Mas- 
sachusetts. produce short sequences of 25—100 base pairs (bp), 
called ‘reads’, which are sequence fragments read from a longer 
DNA molecule present in the sample that is fed into the ma- 
chine. In contrast to whole—genome assembly, in which these 
reads are assembled together to reconstruct a previously un- 
known genome, many of the next-generation sequencing projects 
begin with a known, or so-called ‘reference', genome. In this 
case. to make sense of the reads, their positions within the ref- 
erence sequence must be determined. This process is known as 
aligning or ‘mapping' the read to the reference. 

Short-read mappers are, among others, Bowtie [198], BWA [202]. SOAP2 
[203], and ZBWI‘ [197]; see e.g. [1 13,312] for overview articles. In the fol- 
lowing, we discuss the basic algorithms used in BWA, Bowtie, and 2BWI‘. 



7.9 Approximate string matching 375 

The short read mapping problem is exacerbated by sequencing errors 
and variations between the sequenced chromosomes and the reference 
genome.9 First, we consider the scenario in which only mismatches are 
allowed (Hamming distance) and subsequently address the problem of 
also allowmg insertions and deletions (edit distance). 

7.9.1 Using backward search 
Definition 7.9.1 The Hamming distance between two strings S1 and S2 
of equal length is the number of positions at which the corresponding 
characters are different: 

hdist(Sl,Sz) = W | 51M at SZMH 
To put it another way, the Hamming distance measures the minimum 

number of substitutions required to change S1 into .92 (or vice versa). 

Definition 7.9.2 Let P and S be strings with m = |P| < |S| = n, and let k 
be a natural number with k < m. An m-length substring S[z’..z‘ + m — 1] is 
called a k-mismatch of P in S if hdist(P, S[i..2' + m — 1]) S k. The k-mismatch 
problem is to find all positions in S at which a k-mismatch of P in S starts. 

When k and 2 are small, one can solve the k—mismatch problem by 
the following approach. First, generate the so-called Hamming sphere ’P 
of radius k .at center P (defined below). Second, use the Aho-Corasick 
algorithm from Section 2.5 to find all positions in S at which a pattern 
from P starts. The Hamming sphere of radius k at center P is the set 

7’ = {P’ ) hdist(P, P’) S k} 

The number of strings in the Hamming sphere P is 
k . 

Z (2)02! — 1)‘ e 0(mk12r) 
i=0 

As an example. consider the pattern P = tact on the alphabet 2 = (a, c, g, t}. 
The Hamming sphere of radius k = 1 at center P is the set 

{tact, aact, cact, gact, tcct, tgct, ttct, taut, tagt, tatt, taca, tacc, tacg} 

Li and Durbin [202] suggested a different solution to the problem. Their 
algorithm uses an FM-index to simultaneously find different occurrences 
Of subpattems, and it prunes the search space using a lower bound on 
the distance. 

9Li and Durbin [202] suggest the following number k of differences (mismatches or gaps) 
that should be tolerated: for 15-37 hp reads, k equals 2: for 3863 bp. 1: = 3; for 64-92 
bp. k = 4: for 93-123 bp. k = 5; and for 124-156 bp reads. k = 6. 



376 7 Compressed Full-Text Indexes 

Algorithm 7.40 The procedure k-mz‘smatch. 
procedure k-m'ismatch(P, j, d, [lb..rb]) 

if d < 0 then 
return (0 

i f j  = 0 then / *  k-mismatches detected * /  
return {[lb..rb]} 

I <— 0 
list (— getIntervals([lb..rb]) 
for each (c, [llg..rb]) in list do 

if PU] = c then 
1' 4—- I U k-mismatch(P, j - 1, d, [lb..rb]) 

else / * substitution of PU] with c * / V 
I +— I U k-mismatch(P,j — 1, d — 1, [lb..rb]) ' 

return I . i 

Algoritt 7.40 implements the approach, but it does not prune the 
search space. The procedure call k-mismatch(P, m, k, [1..n]) returns all k- 
mismatches’of' P in S. Let us illustrate the algorithm for k = 1. For each 
position j in P, it uses backward search to find the PU + 1..m]-interval, 
generates all bPLi + 1..m]-intervals (Where b can be any character except S), 
and for each such interval it continues the backward search to find the 
P[1..j —1]bP[j + 1..m]-interval. As an example. consider the pattern P = tact 
and the full-text index of the string 5' = ctaataatgs shown on the left-hand 
side of Figure 7.38. For the position j = 4, the algorithm generates the b- 
interval of every character b e {a, c, g,  t}. and with each interval it continues 
the backward search to find the web-interval. In other words. it searches 
for taca, tacc, tacg. and tact. Only the recursive search for tact still allows 
for one mismatch; in the other cases the algorithm searches for the exact 
phrases taca. tacc, and tacg (in all three cases, the backward search stops 
after one step because neither ca nor cc nor cg are substrings of S). In 
case j = 3, the algorithm generates the at-interval [4..5] and the ct-interval 
[6..6]. The latter results in the recursive call k-mz‘smatch(tact,2,1,[6..6]); 
since getIntervals([6..6]) returns an empty list, the search stops here. The 
former results in the recursive call k—mismatch(tact, 2, 0, [4..5]). which leads 
to the output I = {[8..9]}. This means that there are two 1-mismatches of 
P in 8’, namely starting at the positions SA[8] = 2 and SA[9] = 5. 

Algorithm 7.40 can beextended in such a way that it can deal with 
insertions and deletions. To be precise, the modified algorithm solves the ' 
k—differences problem, which we formally define below. 



7.9 Approximate string matching 377 

BWT'” Sfi'iww 

$ 
aataatc$ 
aatc$ 
ataatcS 
atc$ 
c$ 
gtaataatc$ 
taataatc$ 
taatcS 
tc$ 

o
‘

D
m

N
a

m
-

B
W

N
H

 
e

.
 

Q
9

©
m

6
§

§
u

u
n

 

t 
t 
a 
a 
$ 
t 
c 
a 
a p—

n 

Figure 7.38: Left-hand side: suffix array SA and BWT of the string S = 
ctaataatg$ (the backward index). Right-hand side: Burrows- 
Wheeler transform BWT'“ of 5"” = gtaataatcs (the forward 
index). . 

Definition 7.9.3 Given 51,5“ 6 2‘, we write .91 ——+ S2 if 

e .5" can be obtained from 5’1 by replacing one occurrence of z e 2 by 
y e 2, i.e.. S1 = my and $2 = uyv (substitution), 

0 32 can be obtained from .S'1 by inserting one occurrence o fy  e 2. Le. 
S’1 = no and 6'2 = uyv (insertion). 

e .5" can be obtained from .S'1 by deleting one occurrence of a: e 2. i.e.. 
S" = my and S2 = no (deletion). 

In what follows, the term indel is used to mean an insertion or a dele- 
tion; substitutions and indels are collectively referred to as edit operations. 

Furthermore, we write 51 —+" S” if S1 can be transformed into S2 by a 
sequence of k e N edit operations. 

Definition 7.9.4 The edit distance (or Levenshtetn distance) between two 
strings S" and S2 is the minimum number of edit operations needed to 
transform 31 into 82. Formally. 

' edist(Sl, s?) = min{k 1 31 —>’° 52} 
Definition 7.9.5 Let P and S be strings with m = |P| < |S| = n. and 
let I: be a natural number with I: < m. A subsuing S[i..j] is called an 



378 7 Compressed Full-Text Indexes 

Algorithm 7.41 The procedure call k-difierences(P, m, k, [1271]) finds all ap- 
proximate occurrencees of P in S, using the array Mzr. 
procedure k- diflerences(P, j, d, [1b. .rb]) 

if d < Mz,[j] then / * M1, [7'] is a lower bound on the remaining differences * / 
return 0 

if j = 0 then / * approximate occurrencees of P in S detected * / 
return {[lb..rb}} 

I +— (0 
I <— I U  k-difierences(P,j —— 1, d — l ,  [lb..rb]) / *  deletion of PU] * /  
list (— getIntervals([lb..rb]) 
for each (c, [lb..rb]) in list do 

I 4— I U k-difierences(P, j, d —- 1, [lb..rb]) / * insertion of c * /  
if PU] = c then 

I (— I U  k-difierences(P,j - 1, d, [lb..rb]) 
else / * substitution of PU] with c * / 

I (— I U  k-dz'fierences(P,j — 1, d — 1, [lb..rb]) 
return 1' 

approximate occurrence of P in S if edist(P,S[i..j]) S k. The k-dijferences 
problem is to find all positionsin S at which an approximate occurrence 
of P in 5’ starts. 

Algorithm 7.41 solves the k-differences problem. In the first if-then 
statement. it uses a lower bound on the edit distance that can be used to 
prune the search space. To derive the lower bound, we use the following 
definition, which is motivated by Ehrenfeucht and Haussler’s [84] notion 
of compatible markings. As a side remark: Ukkonen [3 14] as well as Chang 
and Lawler [54] used this technique in fast approximate string matching 
algorithms. 

Definition 7.9.6 For a string 3 of length n and a pattern P of length m. 
there is a unique lefi- to-right partition P =  M1011U202. ”wkckwkfi of P w. r. t. S 
so that each w. is a subsiring of S but w.-cI is not. The characters c1, .,c,. 
are the marked characters and the lefi- to-right marking 

M1,.(P, S),= {p.- lpa = 2 Med} 
j=l 

is the set of positions at which the marked characters appear in P. 

As an example, consider the pattern P =  ttaatt and the string S = 
ctaat‘aatgs; see Figure 7. 38 [page 377). The left-to—right partition consists 
ofwl = t .  c1 = t, 102— —. act, 62—— = t, and 1123- — 5. Therefore, M,,(P, S ) :  {2, 6}. 



7.9 Approximate string matching 379 

Lemma 7.9.7 lflM,(P, S)l = k, then no substring of S matches P with less 
than k difl‘enences. 

Proof Let P = 1016110202 . . -wkckwk+1 be the left-to-right partition of P w.r.t. 
S. We show by finite induction on d, 1 g d S k, that no substring of S 
matches the prefix wlcl . . .wdcd of P with less than d differences. In the 
base case d = 1, we know that the longest substring of S that matches a 
prefix of P is wl. Thus, no substring of S exactly matches the prefix wlcl 
of P. In the inductive step. consider d with 2 g d g k. According to the 
inductive hypothesis, no substring of S matches the prefix wl c1 . . . wd_1cd_1 
of P with less than d — 1 differences. The longest substring of S that 
matches a prefix of wdcd . . .wkckwkH has length lwdl. Therefore, a substring 
of S may match wlcl . . . wd_1cd_1wd with d — 1 differences. but no substring 
of S can match W101 . . -wd-lCd—1wdcd with d — l differences (an exact match 
of a substring of S with a suffix of P that starts at or before position 124.; 
must end before position pd in P). This proves the lemma. D 
Definition 7.9.8 Given S and P, let the array M, of size m be defined by 

Mali] = |{p.- s ,- I p.- e was}: ' 
foranjwrthlsjsm.  

Continuing our example fiom above, we have M. = [0,1,1,1,1,2]. 

Corollary 7.9.9 UM,U] = d, then no substring of S matches P[1..j] with _, 
less than d differences. 

Proof Since MW] = d, the left-to—right partition P = wlcl ...wkckw,.+1 of P 
w.r.t. S restricted to the first 3' characters is P[1..j] = wlcl . . . wdcdw, where 
w is a prefix of wd+1- It is readily verified that the left-to—right partition of 
P[1..j] w.r.t. S coincides with w1c1...wdcdw. Thus, the corollary immedi- 
ately follows from Lemma 7.9.7. El 

According to the preceding corollary, the backward search in Algorithm 
7.41 can be stopped when Mum is larger than the number of tolerated 
mismatches. This criterion effectively prunes the search space without 
sacrificing the correctness of the algorithm. Of course, we still have to 
find a way to compute 11/1,, efficiently. Li and Durbin [202] used the for- 
ward index for this purpose: see Exercise 7.9.10. An alternative is to 
use matching statistics, which can be computed space efficiently with the 
balanced parentheses sequence of the LCP-array; see Exercise 7.9.1 1. 

Exercise 7.9.10 Give pseudo-code of an algorithm that computes the 
e-array based on BWT'“, the Burrows-Wheeler transform of 3"". Ana- 
lyze the run—time of the algorithm. 

Exercise 7.9:11 Prove that Algorithm 7.42 correctly calculates the array 
M, and analyze its worst—case time complexity. 



380 7 Compressed Full-Text Indexes 

Algorithm 7.42 The procedure cacg,(P) computes the Mz,-array based 
on the BWT of S. 

compute the matching statistics ms of P w.r.t. S by Alg. 7.25 (page 337) 
m +— |P| V 
k (— 0 
j <— 1 
flag 4—- true 
while j S m do 

if flag = true than 
f o r i = j t o j + m s [ j ] — 1 d o  

M1,-[i] (— k 

j <— j + mSU] 
flag (— false 

else 
k <— k + 1 
Mzrb'] <— k 

, j (— j + 1 
flag 4— true 

7.9.2 Using bidirectional search 
During the development of the tool Bowtie, Langmead’et al. [198] observed 
that a similar approach as in Algorithm 7.40 suffered from excessive back— 
tracking. They write: ' ‘ 

Backtracking scenarios play out within the context of a stack 
structure that grows when a new substitution is introduced and 
shrinks when the aligner rejects all candidate alignments for the ' 
substitutions currently on the stack. 

At first glance, there is no stack in Algorithm 7.40, but it is implicitly 
there: when the procedure is called, the program's runtime environment 
keeps track of the various instances of the procedure using a call stack. 
Bowtie mitigates excessive backtracking using two indexes that support 
backward and forward search (but without synchronization); We use the 
l-mismatch problem to convey the flavor of the method. The mismatch 
(if there is one at all) either occurs (a) in the first half or (b) in the second 
half of the pattern. Let s = g]. 

(a) In this case. the second half P[s + 1..m] of the pattern must match 
exactly, and the procedure call backwardSearch(P[s+ 1..m]) returns the 
P[s + 1..m] -interva1 [lb_..rb] (if it exists). It then tries to extend this exact 
match to the left, allowing for one mismatch. This is exactly what the 
procedure k-mismatch(P, s, 1, [lb..rb]) does. 


